
Chapter 26 – Inference for Regression 
 
26.1 (a) A scatterplot of the data is provided, along with the least-squares regression line 
(students were not asked to add the line). We see that there is a strong, positive, linear 
relationship between wine intake and relative risk. From software, the correlation is 𝑟𝑟 =
√0.97 = 0.985. 
 

 
 
(b) If we knew it, the slope 𝛽𝛽 would tell us how much the relative risk of breast cancer 
changes in women for each increase of 1 gram of wine per day (on average). The estimate 
of 𝛽𝛽 is b = 0.009012 (see output provided). We estimate that an increase in intake of 1 gram 
per day increases relative risk of breast cancer by about 0.009. The estimate of 𝛼𝛼 is a = 
0.9931. According to our estimate, wine intake of 0 grams per day is associated with a 
relative risk of breast cancer of 0.9931 (about 1). 
 
Regression Analysis: Risk versus Wine 
The regression equation is Risk = 0.993 + 0.00901 Wine 
 
Predictor  Coef    SE Coef T P 

Constant  0.99309 0.01777 55.88 0.000 

Wine  0.009012 0.001112 8.10 0.015 
 
S = 0.0198583   R-Sq = 97.0%   R-Sq(adj) = 95.6% 

 
(c) The least-squares regression line is given by 𝑦𝑦𝑦 = 0.9931 + 0.009𝑥𝑥. The provided table 
summarizes computed residuals, which sum to zero, as demonstrated. We also have 𝑠𝑠2 =
0.00079 2⁄ = 0.000395, which provides an estimate of 𝜎𝜎2. We estimate 𝜎𝜎 by 𝑠𝑠 = √0.00079

4 − 2
=

0.01987, which agrees (up to roundoff error) with S in the output given. 
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Residual 
x y 𝑦𝑦𝑦 (𝑦𝑦 − 𝑦𝑦𝑦) (𝑦𝑦 − 𝑦𝑦𝑦)2 
2.5 1.00 1.0156 −0.0156 0.00024 
8.5 1.08 1.0697 0.0103 0.00011 

15.5 1.15 1.1328 0.0172 0.00030 
26.5 1.22 1.2319 −0.0119 0.00014 

   0 0.00079 
 
26.2 (a) A scatterplot of the data is provided, with the least-squares regression line added, 
which is asked for in part (c). From the output provided, 𝑟𝑟2 = 0.2006. Our model explains 
about 20.1% of the observed variability in brain volume. 

 
 
(b) Reading directly from the output in Figure 26.4, we estimate 𝛼𝛼 by a = 10.0655. We 
estimate 𝛽𝛽 by b = 86.0308. We estimate 𝜎𝜎 by 𝑠𝑠 = 7.9088. Units are not defined in the 
problem. (c) The least-squares regression line is given by 𝑦𝑦𝑦 = 10.0655 + 86.0308𝑥𝑥. This 
line has been added to the scatterplot in part (a). 
 
26.3 (a) A scatterplot of discharge by year is provided, along with the fitted regression line, 
which is requested in part (b). Discharge seems to be increasing over time, but there is also 
a lot of variation in this trend. From the JMP output provided, 𝑟𝑟2 = 0.174, so the least-
squares regression line explains 17.4% of the total observed variability in Arctic discharge. 
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(b) The regression line has been added to the scatterplot provided in part (a). The least-
squares regression line is given by 𝑦𝑦𝑦 = −2589.283 + 2.239𝑥𝑥. We see from the output given 
that 𝑠𝑠 = 112.596. 
 
26.4 (a) 𝑡𝑡 = 𝑏𝑏

𝑆𝑆𝑆𝑆𝑏𝑏
= 0.009012

0.001112
= 8.1. (b) The sample size is n = 4, so df = 4 – 2 = 2. Using Table 

C, for a one-sided alternative, 0.005 < P < 0.01 (P = 0.0074 from technology; the P-value 
given in the Minitab output for Exercise 26.1 uses a two-tailed alternate). These data 
indicate strongly that breast cancer relative risk increases with additional wine 
consumption. Don’t forget that these data involved averaging over individuals. The data 
points provided are averages at each value of wine intake. No doubt, there would be far 
more variation between individuals, and the statistical significance of the results will not be 
as strong for individuals as for averages. 
 
26.5 Refer to the output provided with the solution to Exercise 26.3. We test 𝐻𝐻0: 𝛽𝛽 = 0 
versus 𝐻𝐻a: 𝛽𝛽 > 0. We compute 𝑡𝑡 = 𝑏𝑏

𝑆𝑆𝑆𝑆𝑏𝑏
= 2.2385

0.5555
= 4.03. Here, df = n – 2 = 79 – 2 = 77. In 

referring to Table C, we round df down to df = 60. Using Table C, we obtain P < 0.0005. 
Using software, we obtain P = 0.000 (rounded to three decimal places). There is strong 
evidence of an increase in Arctic discharge over time. 
 
26.6 The JMP output is provided. We have 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 ≠ 0. We observe 𝑡𝑡 =
𝑏𝑏
𝑆𝑆𝑆𝑆𝑏𝑏

= −0.0229
0.1678

= −0.14. We clearly will not reject the null hypothesis. With df = 8 – 2 = 6, 
using Table C, we obtain P > 0.50. From software, P = 0.896. There is little evidence of a 
straight-line relationship between fuel use and speed. However, examining the provided 
scatterplot, we see that there is, in fact, a very strong (nonlinear) relationship between 
speed and fuel use. One should always plot data before performing a regression. 
 



 

 

26.7 (a) Refer to the solution of Exercise 26.4. For testing 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 > 0, we 
have t = 8.1 with df = 2. For the one-sided alternative suggested, we obtained 0.005 < P < 
0.01. This test is equivalent to testing 𝐻𝐻0: population correlation = 0 versus 𝐻𝐻a: population 
correlation > 0. (b) Using software, r = 0.985. This can also be computed by referring to the 
Minitab output provided with Exercise 26.1, with 𝑟𝑟 = +√𝑟𝑟2 = +√0.97. Referring to Table E 
with n = 4, we find that 0.005 < P < 0.01, just as in part (a). These tests are equivalent. 
 
26.8 Refer to the scatterplot provided with the solution to Exercise 4.47. We have 𝑟𝑟 =
0.878 and n = 13. Testing 𝐻𝐻0: population correlation = 0 versus 𝐻𝐻a: population correlation > 
0, using Table E, P < 0.0005. There is overwhelming evidence of a positive linear 
relationship between social distress score and activity in the part of the brain known to be 
activated by physical pain. 
 
26.9 Referring to Table C, t* = 2.920 (df = 4 – 2 = 2, with 90% confidence). A 90% 
confidence interval for 𝛽𝛽 is given by 0.009012 ± 2.920(0.001112) = 0.009012 ± 0.003247 
= 0.00577 to 0.01226. With 90% confidence, the expected increase in relative risk of breast 
cancer associated with an increase in alcohol consumption by 1 gram per day is between 
0.00577 and 0.01226. 
 
26.10 There are n = 29 observations, so df = 29 – 2 = 27. From Table C, t* = 2.052. From the 
output provided in Figure 26.4, b = 86.030829 and 𝑆𝑆𝑆𝑆𝑏𝑏 = 33.04842. A 95% confidence 



interval for the increase in Aroc per unit increase in volume is given by 86.030829 ± 
2.052(33.04842) = 18.22 to 153.85. With 95% confidence, each unit increase in 
introspective ability (as measured by Aroc) is associated with an increase of between 18.22 
and 153.85 units of gray-matter volume (as measured by Brodmann area). 
 
26.11 Refer to the output provided in the solution to Exercise 26.3. We have b = 2.2385 and 
𝑆𝑆𝑆𝑆𝑏𝑏 = 0.5555. With 79 observations, df = 77. Using Table C, we look under the row 
corresponding to df = 60 (the nearest smaller value of df in the table). We obtain t* = 1.671 
(t* = 1.665 from software). A 90% confidence interval for 𝛽𝛽 is given by 2.2385 ± 
1.671(0.5555) = 2.2385 ± 0.9282 = 1.3103 to 3.1667 cubic kilometers per year (software: 
1.3136 to 3.1634). With 90% confidence, the yearly increase in Arctic discharge is between 
1.3103 and 3.1667 cubic kilometers. This confidence interval excludes zero, so there is 
evidence that Arctic discharge is increasing over time. 
 
26.12 (a) If we wish to predict the relative risk of breast cancer for a single group of 
women for which 𝑥𝑥∗ = 10, then we should use a prediction interval. This is denoted “95% 
PI” in the output shown in Figure 26.8 of the text. With 95% confidence, the relative risk of 
breast cancer for an individual woman drinking 10 grams of red wine per day is 0.98643 to 
1.18000. (b) From the output shown in Figure 26.8 of the text, 𝜇̂𝜇 = 1.08321 and 𝑆𝑆𝑆𝑆𝜇𝜇𝜇 =
0.01057. For df = 4 – 2 = 2 and 90% confidence, t* = 2.920. A 90% confidence interval for 
the mean relative risk of breast cancer in all women drinking 10 grams of red wine per day 
is 1.08321 ± 2.920(0.01057) = 1.052 to 1.114. 
 
26.13 (a) If 𝑥𝑥∗ = 0.65, then our prediction for mean volume is 𝜇̂𝜇 = 10.0655 +
86.0308(0.65) = 65.98552. (b) We have 𝑆𝑆𝑆𝑆𝜇𝜇𝜇 = 1.47. For df = 29 – 2 = 27 and 95% 
confidence, we have t* = 2.052. A 95% confidence interval for mean brain gray-matter 
volume in people with 0.65 Aroc is given by 65.98552 ± 2.052(1.469) = 62.971 to 69.000. 
 
26.14 (a) A stemplot of the residuals is provided, where –1|6 represents –0.16. The 
distribution of residuals appears close to Normal, with one outlier in the left tail (a residual 
of –0.16). 
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(b) The residual plot is also provided. There is not evidence of a clear deviation from a 
linear pattern; that is, there is no visible pattern in the residuals.  While there appears to be 
roughly equal variability in the residuals about the “residual = 0” line, there is a slightly 
larger variance in residuals that have small maximum sea surface temperatures. (With such 
few observations, it is difficult to have “perfectly” equal variability.) 



 
 
26.15 (a) The provided residual plot does not suggest any deviation from a straight-line 
relationship between brain volume and Aroc score, although there are two large (in 
absolute value) residuals near the left end of the plot. Both babies had Aroc scores of about 
0.63, but one child's IQ was underpredicted (the positive residual) and one child's was 
overpredicted (the negative residual). 

 
 
(b) The provided stemplot of residuals does not suggest that the distribution of residuals 
departs strongly from Normality. The value 22 from observation 5 may be an outlier; other 
than that, the residuals are symmetric and mound-shaped. 
 

 

(c) It is reasonable to assume that the observations are independent, because we have 29 
different subjects who are measured separately. (d) Other than the large residuals noted in 
part (a), there is no indication that variability changes; there are fewer babies with low 
Aroc scores, so there is naturally less variability on the left end of the plot. 
 



26.16 (a) price = 100.2 + 1.2186 ×  appraised value. From the output provided, a = 100.2 
and b = 1.2186. 
 
26.17 (c) 0.766. With a positive association, 𝑟𝑟 = + √𝑟𝑟2 = + √0.587 = 0.766. 
 
26.18 (b) the average increase in selling price in a population of units when appraised 
value increases by $1000. Individual price increases vary, so answer option (c) is 
inappropriate. The population regression line provides all predicted mean prices, given 
appraised value. 
 
26.19 (a) 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 > 0. This is a one-sided alternative because we wonder if 
larger appraisal values are associated with larger selling prices. 
 
26.20 (c) less than 0.001. Note that the output shows P = 0.000 to three decimal places. 
 
26.21 (c) 211.291. This is the value of s. 
 
26.22 (c) 50. There are 52 observations, so df = 52 – 2 = 50. 
 
26.23 (b) 1.2186 ± 0.2905. Using Table C and 50 degrees of freedom, t* = 2.009, so the 
margin of error is 2.009(0.1446) = 0.2905. 
 
26.24 (a) $646,500 and $1,503,700. The prediction interval is appropriate because she 
wants an interval for just her unit. 
 
26.25 (a) Scientists estimate that each additional 1% increase in the percent of Bt cotton 
plants results in an average increase of 6.81 mirid bugs per 100 plants. (b) The regression 
model explains 90% of the variability in mirid bug density. That is, knowledge of the 
proportion of Bt cotton plants explains almost all of the variation in mirid bug density. (c) 
Recall that the test 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 > 0 is exactly the same as the test 𝐻𝐻0: population 
correlation = 0 versus 𝐻𝐻a: population correlation > 0. Because P < 0.0001, there is strong 
evidence of a positive linear relationship between the proportion of Bt cotton plants and 
the density of mirid bugs. (d) We may conclude that denser mirid bug populations are 
associated with larger proportions of Bt cotton plants. However, it seems plausible that a 
reduced use of pesticides (an indirect cause) instead of more Bt cotton plants (a direct 
cause) is the reason for this increase. 
 
26.26 We test 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 ≠ 0 and observe 𝑡𝑡 = 𝑏𝑏

𝑆𝑆𝑆𝑆𝑏𝑏
= 274.78

88.18
= 3.116 with df = 12 

– 2 = 10. The two-sided P-value is between 0.01 and 0.02 (technology gives 0.0109). There 
is strong evidence of a linear relationship between thickness and gate velocity. 
 
26.27 (For 90% intervals with df = 10, use t* = 1.812.) (a) Use the estimated slope and 
standard error given in Figure 26.13. The confidence interval for 𝛽𝛽 is 𝑏𝑏 ± 𝑡𝑡∗𝑆𝑆𝑆𝑆𝑏𝑏 = 274.78 ±
1.812(88.18) = 274.78 ± 159.78 = 115.0 to 434.6 fps/inch. (b) This is the “90% CI” given 
in Figure 26.13: 176.2 to 239.4 fps. To confirm this, we can use the given values of 𝑦𝑦𝑦 =



207.8 and 𝑆𝑆𝑆𝑆𝜇𝜇𝜇 = 17.4, labeled “Fit” and “SE Fit” in the output shown in Figure 26.13 of the 
text: 𝑦𝑦𝑦 ± 𝑡𝑡∗𝑆𝑆𝑆𝑆𝜇𝜇𝜇 = 207.8 ± 1.812(17.4) = 176.3 to 239.3 fps, which agrees with the output 
up to roundoff error. 
 
26.28 (a) The provided scatterplot shows no obvious nonlinearity or change in variability. 

 
(b) The provided histogram is unimodal and skewed to the left, and there are two very 
large, negative residuals (including observation 9, which is “flagged” in Figure 26.13). 

(c) Student opinions about whether this point is influential may vary. There are some 
changes, but they might not be considered substantial: the regression standard error is 
about 25% smaller and the prediction for x = 0.5 inch is about 8 fps larger, and the 
confidence interval is also narrower due to the reduced standard error. 
 
26.29 (a) The provided stemplot confirms the comments from the text: there is little 
evidence of non-Normality in the residuals, and there don’t appear to be any outliers. 
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(b) The provided scatterplot confirms the comments made in the text: There is no clear 
pattern, but the variability about the “residual = 0” line may be slightly greater when x is 
larger. 
 

 

(c) Presumably, close inspection of a manatee’s corpse will reveal nonsubtle clues when 
the cause of death is from collision with a boat propeller. It seems reasonable that the kills 
are mostly not caused by pollution. 
 
26.30 We test H0: β = 0 versus Ha: β > 0. With df = 39 – 2 = 37, we have t = b

SEb
=

0.133051
0.006954

= 19.133, and P < 0.0005. There is overwhelming evidence that manatee kills 
increase with number of boats registered. 
 
26.31 (a) This is a confidence interval for 𝛽𝛽. With df = 37, using Table C (and rounding 
degrees of freedom down to 30), we have t* = 2.042, so a 95% confidence interval for 𝛽𝛽 is 
𝑏𝑏 ± 𝑡𝑡∗𝑆𝑆𝑆𝑆𝑏𝑏 = 0.133051 ± 2.042(0.006954) = 0.133051 ± 0.0142 = 0.11885 to 0.14725 
additional killed manatees per 1000 additional boats. (Using technology, df = 37, and t* = 
2.026, we have 0.11896 to 0.14714 additional killed manatees per 1000 additional boats.) 
(b) With 900,000 boats, we predict 𝑦𝑦𝑦 = −45.27 + 0.133051(900) = 74.4759 killed 
manatees, which agrees with the output in Figure 26.14 under “Fit.” We need the prediction 
interval because we are forecasting the number of manatees killed for a single year. 
According to the output provided, a 95% prediction interval for the number of killed 
manatees is 58.06 to 90.89 kills if 900,000 boats are registered. 
 
26.32 (a) The Minitab output for this analysis is provided. Recall that the test for 𝐻𝐻0: 𝛽𝛽 = 0 
is equivalent to the test of 𝐻𝐻0: population correlation = 0. We have 𝑡𝑡 = −4.64 and P < 
0.0005 for testing 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 ≠ 0. For a one-sided test, P is half the size of 
Minitab’s value. For the test of 𝐻𝐻0: population correlation = 0 against 𝐻𝐻a: population 



correlation < 0, we have P < 0.00025. There is overwhelming evidence of a negative 
population correlation. 
 
Regression Analysis: Fat versus NEA 
 
The regression equation is Fat = 3.51 - 0.00344 NEA 
 
Predictor  Coef    SE Coef T P 

Constant  3.5051 0.3036 11.54 0.000 

NEA  -0.0034415 0.0007414 -4.64 0.000 

 
S = 0.739853   R-Sq = 60.6%   R-Sq(adj) = 57.8% 

 
New Obs  Fit   SE Fit 95% CI 95% PI 

1  2.129 0.193 (1.714, 2.543) (0.488, 3.769) 

 
(b) To find this interval, we need 𝑆𝑆𝑆𝑆𝑏𝑏, which is 0.0007414. With df = 14, t* = 1.761 for 90% 
confidence. A 90% confidence interval for 𝛽𝛽 is −0.0034415 ± 1.761(0.0007414) =
−0.0034415 ± 0.00131 = −0.00475 to –0.00213. (c) This question calls for a prediction 
interval. The Minitab output provided in part (a) gives the interval as 0.488 to 3.769 kg. 
 
26.33 (a) We test 𝐻𝐻0: population correlation = 0 against 𝐻𝐻a: population correlation > 0; 
recall this is equivalent to a test for 𝛽𝛽 > 0. We see that t = 4.40 with df = 32 – 2 = 30. So, the 
one-sided P-value is P = 0.0001/2 = 0.00005, using the provided JMP output. There is very 
strong evidence of a positive correlation between Gray’s forecasted number of storms and 
the number of storms that actually occur. 

 
 
(b) The output provided gives the confidence interval for the mean number of storms in 
years for which Gray predicts 16 storms (use the line for 2011). Here 𝜇̂𝜇 = 1.6004 +
0.9443(16) = 16.7092 storms, and JMP gives the 95% confidence interval for the mean as 
14.4564 to 18.9628 storms. 

 
 



26.34 (a) The provided scatterplot reveals a fairly strong, negative, linear relationship 
between the mean sea surface temperature and coral growth. A formal test of 𝐻𝐻0: 𝛽𝛽 = 0 
versus 𝐻𝐻a: 𝛽𝛽 < 0 reveals t = −2.77 with df = 6 – 2 = 4. The one-sided P-value is P = 0.0502/2 
= 0.0251, using the provided JMP output. There is strong evidence of a negative linear 
relationship between the mean sea surface temperature and coral growth. 

 
 
 

 

(b) The fit is 𝜇̂𝜇 = 5.0389 − 0.1579(26.4) = 0.8703 cm/year. A 95% confidence interval for 
the mean coral growth per year when the mean sea surface temperature is 26.4°C is given 
by 0.8364 to 0.9047 cm/year (from the provided JMP output). 

 
 
26.35 The stemplot is provided, where residuals are rounded to the nearest whole number. 
The plot suggests that the residuals may not follow a Normal distribution. Specifically, 



there is both a low outlier and a high outlier that seems extreme. This makes regression 
inference and interval procedures unreliable. 

 
 
26.36 (The two requested plots are provided.) 

 
 

 

(a) There is a potential outlier, but with only six observations, and considering the 
scatterplot provided in the solution to Exercise 26.34, there is no evidence of a systematic 
departure from nonlinearity in the relationship between mean sea surface temperature 
and coral growth. (b) There is some evidence (albeit difficult to detect with only six 
observations) that residuals are non-Normal. (c) It is not clear that observations are 
independent. For example, perhaps temperatures one year are correlated with 
temperatures the next year. (d) There appears to be a trend in the residual plot—there is 
small variation for residuals corresponding to small temperatures and large variation for 



residuals corresponding to large temperatures. However, the outlier may be causing this 
pattern to occur. 
 
26.37 (a) Shown is the scatterplot with two (nearly identical) regression lines: one using 
all points and one with the outlier omitted. The Minitab output for both regression analyses 
is provided.  

 

Regression output (all points) 
 
The regression equation is 
Behave = 0.585 + 0.00879 Neural 
 
Predictor   Coef  SE Coef   T   P 
Constant  0.58496 0.07093  8.25 0.000 
Neural   0.008794 0.001465 6.00 0.000 
 
S = 0.279729   R-Sq = 72.0% 

Regression output (without outlier) 
 
The regression equation is 
Behave = 0.586 + 0.00891 Neural 
 
Predictor   Coef  SE Coef   T   P 
Constant  0.58581 0.07506  7.80 0.000 
Neural   0.008909 0.002510 3.55 0.004 
 
S = 0.290252   R-Sq = 49.2% 

 
 
(b) The correlation for all points is r = 0.8486. For testing the slope, t = 6.00, for which P < 
0.0005. (c) Without the outlier, r = 0.7014, the test statistic for the slope is t = 3.55, and P = 
0.004. In both cases, there is strong evidence of a linear relationship between neural loss 
aversion and behavioral loss aversion. However, omitting the outlier weakens this evidence 
somewhat. 
 
26.38 (a) The Minitab output and the scatterplot with superimposed regression line are 
shown. The regression equation is 𝑦𝑦𝑦 = 560.65 − 3.0771𝑥𝑥, and the correlation is 𝑟𝑟 =
−0.6492. Generally, the longer a child remains at the table, the fewer calories he or she will 
consume. This relationship is moderately strong and linear. 
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The regression equation is 
Cal = 561 - 3.08 Time 
 
Predictor  Coef    SE Coef T P 

Constant  560.65 29.37 19.09 0.000 

Time  -3.0771 0.8498 -3.62 0.002 
 
S = 23.3980   R-Sq = 42.1% 

 
(b) All the conditions for inference appear to be upheld. First, it is reasonable to view the 
children as independent. The scatterplot in part (a) appears to be roughly linear and does 
not suggest that the standard deviation changes (the provided scatterplot of residuals 
against time spent at the table also supports this later observation). The provided stemplot 
suggests that the distribution of residuals has a slightly irregular appearance, but it is not 
markedly non-Normal. 
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(c) The slope is significantly different from 0; 𝑡𝑡 = −3.62 and P = 0.002. Software reports 
that 𝑆𝑆𝑆𝑆𝑏𝑏 = 0.8498. With df = 18, t* = 2.101, so the 95% confidence interval for 𝛽𝛽 is –3.0771 
± 2.101(0.8498) = –4.8625 to –1.2917 calories per minute. 
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26.39 A stemplot is provided. The distribution is skewed right, but the sample is large so t 
procedures should be safe. We find 𝑥̅𝑥 = 0.2781 g/m2 and s = 0.1803 g/m2. Table C gives t* = 
1.984 for df = 100 (rounded down from 115). The 95% confidence interval for 𝜇𝜇 is 
0.2781 ± 1.981(0.1803 √116⁄ ) = 0.2449 to 0.3113 g/m2. (Using df = 115, we have t* = 
1.981, and the 95% confidence interval for 𝜇𝜇 is identical.) 
 
0 0067778999 
1 000011112223334555555666777788889 
2 00000111122333444666667788889 
3 00000111222333456667788999 
4 01456667 
5 3589 
6 04 
7  
8 29 
9 0 

10 5 
 
26.40 Refer to the output provided with the solution to Exercise 26.38. We construct a 
prediction interval for the calories of a single child sitting at the table for 40 minutes, 
instead of a confidence interval for mean calories of all children sitting for 40 minutes. We 
have 𝑦𝑦𝑦 = 560.65 − 3.0771(40) = 437.57 calories. Then 𝑆𝑆𝑆𝑆𝑦𝑦𝑦 = 𝑠𝑠√1 + 1

𝑛𝑛
+ (𝑥𝑥∗ − 𝑥𝑥)2

∑(𝑥𝑥 −𝑥𝑥)2
=

23.4√1 + 1
20

+ (40 − 34.01)2

758.07
= 24.51 calories. A 95% prediction interval is given by 437.57 ± 

2.101(24.51) = 386 to 489 calories. Note that it would be preferable to simply ask for this 
interval from software. Doing so, the following output would be appended to the output 
provided with Exercise 26.38. 
 
New Obs  Fit   SE Fit 95% CI 95% PI 

1  437.57 7.30 (422.23, 452.90) (386.07, 489.06) 

 
26.41 PLAN: We examine the relationship between pine cone abundance and squirrel 
density using a scatterplot and regression. SOLVE: The provided scatterplot indicates a 
positive relationship that is roughly linear, with what appears to be an outlier at the upper 
right of the graph. Regression output is shown. Regression gives predicted squirrel density 
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as 𝑦𝑦𝑦 = 0.961 + 0.205𝑥𝑥. The slope is significantly different from zero (t = 3.13, P = 0.005). To 
assess the evidence that more cones leads to more offspring, we should use the one-sided 
alternative, 𝐻𝐻a:  𝛽𝛽 > 0, for which P is half as large (so P = 0.0025). The conditions for 
inference seem to be violated. The provided residual plot shows what appears to be 
increasing variability with increasing cone values, as well as the outlier already mentioned. 
The provided stemplot of the residuals indicates two large positive outliers; the 
distribution may be right-skewed. CONCLUDE: We seem to have strong evidence of a 
positive linear relationship between cone abundance and squirrel density; however, 
conditions for inference may not be satisfied. 

Regression Analysis: density versus cones 
 
Coefficients 
 
Term  Coef    SE Coef T-Value P-Value VIF 

Constant  0.961 0.188 5.12 0.000  

cones  0.2053 0.0657 3.13 0.005 1.00 

 
S R-sq 

0.501448 31.75% 
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26.42 PLAN: We examine the relationship between HAV angle and MA angle using a 
scatterplot and regression. SOLVE: Refer to solutions to Exercises 7.49 and 7.51 for the 
scatterplot and the regression line fit to the data. Although there was an outlier in the data, 
the data show a roughly linear relationship. From Exercise 7.51, we have 𝑦𝑦𝑦 = 19.723 + 
0.3388x. The regression output shown indicates that for testing 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 ≠ 0, 
we find t = 1.90 and P = 0.065. We have some evidence of a linear relationship between MA 
angle and HAV, but not strong evidence. Note that perhaps the researchers were really 
interested in testing 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 > 0 (as perhaps they felt that severe MA 
deformity is associated with larger MA angle). If so, then P = 0.033, which is half that for the 
two-sided test. We have strong evidence for such an assertion. An analysis of the residuals, 
both in the provided stemplot and the provided scatterplot against MA angle, shows the 
same outlier visible in the original scatterplot; this might make us hesitate to use inference 
procedures. Other than the outlier, there are no great causes of concern: the rest of the 
stemplot appears to be roughly Normal, and the scatterplot has no clear pattern, although 
there is some suggestion that the variability about the line is slightly greater for small MA 
angles. It seems reasonable to believe that observations are independent here because the 
data concern different patients. CONCLUDE: The correlation is significantly positive with 
the full data set and significantly different from zero with the outlier removed. In neither 
case is the relationship very useful for prediction, because the models explain less than 
20% of the total variation in HAV. 
Note: If we remove the outlier, then 𝑦𝑦𝑦 = 17.7 + 0.419x. In the absence of the outlier, there is 
strong evidence of a linear relationship between HAV and MA angle (t = 2.93, P = 0.006). 
Residual analysis shows little reason for concern, and all assumptions needed for inference 
appear to be met, as discussed above. 
 
The regression equation is 
HAV = 19.7 + 0.339 MA 
 
Predictor  Coef    SE Coef T P 

Constant  19.723 3.217 6.13 0.000 

MA  0.3388 0.1782 1.90 0.065 
 
S = 7.22371   R-Sq = 9.1%   R-Sq(adj) = 6.6% 

 



 

 

26.43 PLAN: We will examine the relationship between beaver stumps and beetle larvae 
using a scatterplot and regression. We specifically wish to test for a positive slope β and 
find a confidence interval for β. SOLVE: The provided scatterplot shows a positive linear 
association; the regression line is 𝑦𝑦𝑦 = −1.286 + 11.894x. This line is superimposed on the 
scatterplot. A stemplot of the residuals is shown and does not suggest non-Normality of the 
residuals, the provided residual scatterplot does not suggest nonlinearity, and the problem 
description makes clear that observations are independent. Regression output is shown. To 
test 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 > 0, the test statistic is t = 10.47 (df = 21), for which Table C 
provides a one-sided P-value, P < 0.0005. For df = 21, t* = 2.080 for 95% confidence, so 
with b and 𝑆𝑆𝑆𝑆𝑏𝑏 as given by Minitab, we are 95% confident that β is between 11.894 ± 
2.080(1.136) = 9.531 and 14.257. CONCLUDE: We have strong evidence that beetle larvae 
counts increase with beaver stump counts. Specifically, we are 95% confident that each 
additional stump is (on average) accompanied by between 9.5 and 14.3 additional larvae 
clusters. 
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The regression equation is Larvae = - 1.29 + 11.9 Stumps 
 
Predictor  Coef    SE Coef T P 
Constant  -1.286 2.853 -0.45 0.657 

Stumps  11.894 1.136 10.47 0.000 
 
S = 6.41939   R-Sq = 83.9%   R-Sq(adj) = 83.1% 

 

26.44 PLAN: We will examine the relationship between SRD and DMS using a scatterplot 
and regression. We will test 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 > 0 and find a 90% confidence interval 
for β. SOLVE: The provided scatterplot shows a positive linear association; the regression 
line is 𝑦𝑦𝑦 = 0.1385 + 0.0282x. This line is superimposed on the scatterplot. The provided 
stemplot of residuals may suggest slight non-Normality due to a low outlier, but not 
severely so. The provided residual scatterplot seems to provide evidence of nonlinearity 
(note the curve at the left end and decreasing variability). Observations are clearly 
independent. Regression output is shown. To test 𝐻𝐻0: 𝛽𝛽 = 0 versus 𝐻𝐻a: 𝛽𝛽 > 0, the test 
statistic is t = 14.03 (df = 13), for which Table C tells us that the one-sided P-value is P < 
0.0005. For df = 13, t* = 1.771 for 90% confidence, so with b = 0.028219 and 𝑆𝑆𝑆𝑆𝑏𝑏 = 
0.002011 as given by Minitab, we are 90% confident that β is between 0.028219 – 
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1.771(0.002011) and 0.028219 + 1.771(0.002011), or 0.0247 and 0.0318. CONCLUDE: We 
have strong evidence that DMS increases with SRD. Specifically, we are 90% confident that, 
on average, each additional unit increase in SRD raises surface DMS concentration by 
between 0.025 and 0.032 nanomolar. 
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The regression equation is DMS = 0.138 + 0.0282 SRD 
 
Predictor  Coef    SE Coef T P 
Constant  0.1385 0.2757 0.50 0.624 

SRD  0.028219 0.002011 14.03 0.000 
 
S = 0.759178   R-Sq = 93.8%   R-Sq(adj) = 93.3% 

 
26.45 PLAN: Using a scatterplot and regression, we examine how well phytopigment 
concentration explains DNA concentration. SOLVE: The provided scatterplot shows a fairly 
strong, linear, positive association; the regression equation is 𝑦𝑦𝑦 = 0.1523 + 8.1676x. This 
line is superimposed on the scatterplot. A provided stemplot of the residuals looks 
reasonably Normal, but the corresponding scatterplot that is also provided suggests that 

300250200150100500

9

8

7

6

5

4

3

2

1

0

Monthly Solar Radiation Dose (watts per sq. meter)

D
M

S 
(n

an
om

ol
ar

s)

Does DMS Increase With More Solar Radiation?

300250200150100500

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

SRD

R
es

id
ua

l 0



the variability about the line is greater when phytopigment concentration is greater. This 
may make regression inference unreliable, but we will proceed. Finally, observations are 
independent, from the context of the problem. Regression output is shown. The slope is 
significantly different from 0 (t = 13.25, df = 114, and P < 0.001). We might also construct a 
95% confidence interval for β: 8.1676 ± 1.984(0.6163) = 6.95 to 9.39 (the 95% confidence 
interval is identical if we use df = 114). CONCLUDE: The significant linear relationship 
between phytopigment and DNA concentrations is consistent with the belief that organic 
matter settling is a primary source of DNA. Starting from a measurement of phytopigment 
concentration, we could give a fairly accurate prediction of DNA concentration, because the 
linear relationship explains about 𝑟𝑟2 = 60.6% of the variation in DNA concentration. We 
are 95% confident that each additional unit increase in phytopigment concentration 
increases DNA concentration by between 6.95 and 9.39 units (on average). 
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The regression equation is DNA = 0.152 + 8.17 Phyto 
 
Predictor  Coef    SE Coef T P 
Constant  0.15231 0.01419 10.73 0.000 

Phyto  8.1676 0.6163 13.25 0.000 
 
S = 0.113612   R-Sq = 60.6% 

 
26.46 (a) The residual scatterplot is provided. As usual, we add a horizontal line at 
residual zero, which is the mean of the residuals. This line corresponds to the regression 
line in the plot of selling price against appraised value. The residuals show a random 
scatter about the line, with roughly equal variability across their range (although there are 
two with large, positive residuals and one large, negative residual). This is what we expect 
when the conditions for regression inference hold. 

 
 
(b) The stemplot is shown. We again see the large residuals (outliers) on either end of the 
distribution. Otherwise, there are no strong deviations from Normality. 
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(c) The plot of residuals against the month of the sale is shown. The pattern of steadily 
rising residuals for the first 36 months shows that predicted prices are too high for early 
sales and too low for later sales. This is what we expect if selling prices are rising and 
appraised values aren’t updated quickly enough to keep up. For months 70 to 100, 
predicted values tend to be a bit high (there are many “small” negative residuals). This may 
be a result of the crash in Florida real estate values. 
 

 

26.47 (a) The mean is 𝑥̅𝑥 = −0.00333, and the standard deviation is s = 1.0233. For a 
standardized set of values, we expect the mean and standard deviation to be (up to 
roundoff error) 0 and 1, respectively. (b) The provided stemplot does not look particularly 
symmetric, but it is not strikingly non-Normal for such a small sample. 
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(c) The probability that a standard Normal variable is as extreme as this is about 0.0272. 
 



26.48 The t statistic given in Figure 26.7 is 𝑡𝑡 = 𝑎𝑎
𝑆𝑆𝑆𝑆𝑎𝑎

= −0.01270
0.01264

= −1.00. The P-value is 0.332, 
so we do not have enough evidence to conclude that the intercept 𝛼𝛼 differs from zero. 
 
26.49 For df = 14 and a 95% confidence interval, we use t* = 2.145, so the interval is –
0.01270 ± 2.145(0.01264) = –0.0398 to 0.0144. This interval does contain zero. 
 
26.50 and 26.51 are Web-based exercises. 
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