Chapter 25 - Two Categorical Variables: The Chi-Square Test

25.1 (a) The table provided gives percents in each category. As an example, there were a total of 5339 surveyed Caucasians. Of these, 785 were between 18 and 24; the proportion of Caucasians surveyed who were between 18 and 24 is 785/5339 = 0.147 , which is represented as 14.7% in the table.

	Caucasian	Hispanic
18 to 24	14.7%	23.8%
25 to 34	26.5%	38.2%
35 to 44	19.2%	24.2%
45 to 54	16.1%	7.3%
55 and over	23.5%	6.5%

(b) The bar graph reveals that Hispanic visitors tend to be younger.

25.2 (a) Out of 18-year-olds suffering from depression, $101 /(97+103+101)=$ 0.3355 , or 33.55%, were bullied frequently. Out of those not depressed, $582 /(1762$ $+1343+582$) $=0.1579$, or 15.79%, were bullied frequently. A bar graph comparing the frequency of being bullied for those who are depressed and those who are not is given.

(b) This was an observational study and not a controlled experiment, so we cannot conclude causation.
25.3 (a) Let p_{1} be the proportion of those who suffer from depression who were bullied occasionally and p_{2} be the proportion of those who do not suffer from depression who were bullied occasionally. $\hat{p}_{1}=0.342, \hat{p}_{2}=0.364$, and the pooled sample proportion is $\hat{p}=\frac{103+1343}{97+103+101+1762+1343+582}=0.3626$. We will test the hypotheses H_{0} : $p_{1}=p_{2}$ against $H_{\mathrm{a}}: p_{1} \neq p_{2}$. We can do the test because the number of successes and failures for each group is large. The test statistic is $z=$ $\frac{0.342-0.364}{\sqrt{0.3626(1-0.3626)\left(\frac{1}{301}+\frac{1}{3687}\right)}}=-0.76$. and the P-value is $P=0.4473$. There is not evidence of a significant difference between the proportions bullied occasionally for those with and without depression. (b) Let p_{1} be the proportion of those who suffer from depression who were bullied frequently and p_{2} be the proportion of those who do not suffer from depression who were bullied frequently. $\hat{p}_{1}=0.3355, \hat{p}_{2}=$ 0.1579 , and the pooled sample proportion is $\hat{p}=\frac{101+582}{97+103+101+1762+1343+582}=$ 0.1713. We will test the hypotheses $H_{0}: p_{1}=p_{2}$ against $H_{\mathrm{a}}: p_{1} \neq p_{2}$. We can do the test because the number of successes and failures for each group is large. The test statistic is $Z=\frac{0.3355-0.1579}{\sqrt{0.1713(1-0.1713)\left(\frac{1}{301}+\frac{1}{3687}\right)}}=7.86$, and the P-value is approximately zero. There is strong evidence that the proportions who were bullied frequently are different for those with and without depression. (c) The P-values only indicate the strength of evidence for a difference in a particular category of bullied frequency. This cannot tell us whether the two distributions, each with three outcomes, are significantly different. If we did three individual tests, we would not know how confident we could be in all three results when taken together.
25.4 (a) For the junior college sample, $\hat{p}=\frac{47}{47+36}=0.5663$, so the standard error is $S E=\sqrt{ } \frac{0.5663(1-0.5663)}{47+36}=0.0544$. A 95% confidence interval for the proportion of all junior college graduates who think astrology is not at all scientific is $0.5663 \pm$
$1.96(0.0544)=0.4597$ to 0.6729 , or 45.97% to 67.29%. Following the same procedure for the other two intervals yields the given table.

Degree Held	\hat{p}	$S E$	95\% Confidence Interval
Junior College	0.5663	0.0544	45.97% to 67.29%
Bachelor	0.8080	0.0263	75.65% to 85.95%
Graduate	0.8968	0.0271	84.4% to 95.0%

(b) Before we take a random sample, there's a 95\% chance that the sample we collect will lead to a confidence interval that captures the true, unknown proportion of people who believe astrology is not at all scientific. As we construct more confidence intervals, each based on a different random sample, the chance that at least one of them fails to capture the parameter of interest increases. The probability, before sampling, that all three intervals contain the true proportions would be $0.95^{3}=0.8574$, assuming independent samples.
25.5 (a) The expected counts for the four age categories (going from youngest to oldest) are $432.2,741.2,511.0,327.5$, and 446.1 . These counts add up to the total observed counts of Hispanic visitors. (b) The observed counts for those under age 44 are larger than the expected counts, but the observed counts for those 45 and older are smaller than the counts that are expected if the distributions are the same.
25.6 (a) The expected counts are given in the table. We can see that the row and column totals agree with the observed counts.

	Never	Occasionally	Frequently	Row Totals
Depressed	140.3	109.1	51.6	301
Not Depressed	1718.7	1336.9	631.4	3687
Column Totals	1859.0	1446.0	683.0	$n=3988$

(b) There are fairly large deviations between the observed and expected counts. In particular, the count for never depressed is much lower than expected under the null hypothesis, and the count for frequently depressed is much higher than expected under the null hypothesis.
25.7 (a) The null hypothesis is H_{0} : there is no relationship between ethnicity and age group for visitors to Monterey Bay Aquarium, and the alternative hypothesis is H_{a} : there is some relationship between ethnicity and age group for visits to Monterey Bay Aquarium. From Figure 25.3, we see the test statistic is $\chi^{2}=540.943$, and the P-value is $P<0.0001$. (b) The cells that contribute the most to the test statistic are from the 55 and over age group. For Caucasians, the actual count for this group is larger than expected under the null hypothesis. For Hispanics, the actual count is smaller than would be expected.
25.8 (a) The chi-squared test statistic is $\chi^{2}=66.141$, and the P-value is $P<0.0001$. Since the P-value is so small, we reject the null hypothesis. There is strong evidence that the frequency of bullying at age 13 is different for 18 -year-olds who have depression versus those who do not. (b) Looking at the row percents, it appears the proportion of 18-year-olds with depression who were bullied frequently is larger than the proportion of those without depression who were bullied frequently.
25.9 PLAN: We want to test the hypothesis H_{0} : there is no relationship between the degree held and the view of astrology against H_{a} : there is some relationship between degree held and view of astrology. We will use a chi-square test. SOLVE: From Figure 25.5, we see the observed percent who view astrology as a science is much lower for bachelor and graduate than for junior college. Formally, we get a test statistic of $\chi^{2}=33.843$ and the P-value is $P=0.000$. CONCLUDE: There is strong evidence that the distribution of view on astrology is related to the degree held.
25.10 (a) We know $\mathrm{df}=(r-1)(c-1)$, where r is the number of rows and c the number of columns. Since there are five age groups and two ethnicities, we get $\mathrm{df}=$ $(5-1)(2-1)=4$. (b) The value of the test statistic is much larger than the largest value shown in Table D for $\mathrm{df}=4$. From the table, we could conclude $P<0.0005$. JMP's bound is more precise than the table's. (c) The degrees of freedom for this table would be df $=(r-1)(c-1)=(5-1)(4-1)=12$.
25.11 (a) $\mathrm{df}=(r-1)(c-1)=(2-1)(3-1)=2$, since there are two categories for Depressed and three categories for Bullied. (b) The value of the test statistic is much larger than the largest value in Table D for $d f=2$, so we can conclude the P value is $P<0.0005$. The bound from JMP is more precise than the bound from the table. (c) If the null hypothesis is true, the mean of the test statistic is $\mathrm{df}=2$. The observed value is much larger than the mean, which is why the P-value is so small.
25.12 The smallest expected count for any cell is 51.55 . Since all expected counts are at least 5 , it is safe to use the chi-square test.
25.13 (a) This would be a chi-square test of homogeneity since we have two populations (high display and low display), and each individual is classified according to which sock they chose. (b) STATE: Use a chi-square test of homogeneity to determine if there is a relationship between which sock is chosen and whether the display was high or low. PLAN: Conduct a chi-square test of the hypotheses H_{0} : there is no relationship between sock location and display height versus H_{a} : there is some relationship between location and display height. SOLVE: The conditional distributions for the high and low display are given in the following table. In parentheses are the expected counts. From the conditional distributions, we notice the proportion who chose the middle location is a bit different for the high and low display. We can test whether the distributions are different using the chisquare test. Note that 8 of 10 , or 80%, of cells have expected counts that are at least 5 , and all cells have expected counts of at least one. It is safe to conduct a chi-square
test. The test statistic is $\chi^{2}=\frac{(14-13)^{2}}{13}+\frac{(12-12.5)^{2}}{12.5}+\cdots+\frac{(1-2.5)^{2}}{2.5}=3.453$. The degrees of freedom are $d f=(2-1)(5-1)=4$. Using Table D , the P-value is $P>$ 0.25 . CONCLUDE: We fail to reject the null hypothesis. There is not evidence of a relationship between the location and display height. (c) No, this test does not answer that question. This test answers the question of whether there is a relationship between location and display height. Whether or not there are any differences among the preferences for the five locations is not questioning the relationship to display height, so the chi-square test of homogeneity is not appropriate.

	Loc 1	Loc 2	Loc 3	Loc 4	Loc 5
High Display	$0.28(13)$	$0.24(12.5)$	$0.28(17)$	$0.12(5)$	$0.08(2.5)$
Low Display	$0.24(13)$	$0.26(12.5)$	$0.40(17)$	$0.08(5)$	$0.02(2.5)$

25.14 (a) Assuming independence across years, we should use a chi-square test of homogeneity because each year is its own population. (b) STATE: Use a chi-square test of homogeneity to determine if there is a relationship between year and confidence. PLAN: Conduct a chi-square test of the hypotheses H_{0} : there is no relationship between year and confidence versus H_{a} : there is some relationship between year and confidence. A contingency table containing the relevant information was computed in JMP and is shown below. From the conditional distributions, we see the degree of confidence percents are quite different from one year to another. All expected counts are at least 5 , so we can safely use a chi-square test. The test statistic is $\chi^{2}=13.5739+58.9510+\cdots+30.9106=252.116$. The degrees of freedom are $\mathrm{df}=(4-1)(3-1)=6$. The P-value is $P<0.0001$ (Using technology). CONCLUDE: We reject the null hypothesis. There is strong evidence of a relationship between year and degree of confidence.

Confidence				
Count Row \% Expected Cell Chi^^2	Great_d eal	Hardly_ any	Some	Total
2002	117	222	553	892
	13.12	24.89	62.00	
	83.3616	369.611	439.028	
	13.5739	58.9510	29.5874	
2006	209	703	1026	1938
	10.78	36.27	52.94	
	181.115	803.033	953.852	
	4.2932	12.4610	5.4572	
2010	125	587	635	1347
	9.28	43.58	47.14	
	125.884	558.145	662.971	
	0.0062	1.4917	1.1801	
2014	93	900	651	1644
	5.66	54.74	39.60	
	153.64	681.211	809.15	
	23.9337	70.2701	30.9106	
Total	544	2412	2865	5821

25.15 We test $H_{0}: p_{1}=p_{2}=p_{3}=\frac{1}{3}$ versus H_{a} : not all three are equally likely. There were 53 bird strikes in all, so the expected counts are each $53 \times \frac{1}{3}=17.67$. The chisquare statistic is then $\chi^{2}=\sum \frac{(\text { observed count }-17.67)^{2}}{17.67}=\frac{(31-17.67)^{2}}{17.67}+\frac{(14-17.67)^{2}}{17.67}+$ $\frac{(8-17.67)^{2}}{17.67}=10.06+0.76+5.29=16.11$. The degrees of freedom are $\mathrm{df}=2$. From Table D, $\chi^{2}=16.11$ falls beyond the 0.0005 critical value, so $P<0.0005$. There is very strong evidence that the three tilts differ. The data and terms of the statistic show that more birds than expected strike the vertical window, and fewer than expected strike the 40-degree window.
25.16 (a) The population proportion with less than a high school degree is $p_{10}=$ $\frac{69195}{461299}=0.15$. Similarly, the proportion with a high school degree is $p_{20}=0.547$, and the population proportion with a college degree is $p_{30}=0.303 \mathrm{We}$ will do a chisquare test for goodness of fit to see if education levels in the sample are significantly different than the levels in the population. That is, we test the hypotheses $H_{0}: p_{1}=0.15, p_{2}=0.547 . p_{3}=0.303$ versus H_{a} : at least one of the proportions is not equal to the value given in the null. Under the null hypothesis, the expected count for the less than high school degree group is $656(0.150)=98.4$, for the high school degree group we have $656(0.547)=358.832$, and for the college degree group we have $656(0.303)=198.768$. These counts are all large, so we can use the chi-square test. The test statistic is $\chi^{2}=\frac{(50-98.4)^{2}}{98.4}+\frac{(286-358.832)^{2}}{358.832}+$ $\frac{(320-198.768)^{2}}{198.768}=112.53$. There are $d f=3-1=2$ degrees of freedom. The P-value is much lower than 0.0005 . Thus, there is strong evidence that the education levels in the sample differ from the population. Comparing the observed and expected counts implies those with less than a college degree are underrepresented, and those with a college degree are overrepresented. (b) Yes, the estimate is likely biased because the sample is not representative of the entire population. Since those with a college degree use the trail more often and are overrepresented in the sample, the estimate of 27% likely overestimates the true proportion of the population that uses the trail.
25.17 (a) The percent of subjects who chose each location (ordered from location 1 to location 5) are $26 \%, 25 \%, 34 \%, 10 \%$, and 5%. (b) If all locations are equally likely, we would expect $100 / 5$, or 20%, to choose each location. Thus, the expected count is 20 for each location. (c) PLAN: Use a chi-square goodness of fit test of the hypotheses H_{0} : $p_{1}=p_{2}=\cdots=p_{5}=0.2$ versus H_{a} : the probabilities are not all 0.2. SOLVE: We can perform a chi-square test since the expected count is greater than 5 for each group. The test statistic is $\chi^{2}=\frac{(26-20)^{2}}{20}+\cdots+\frac{(5-20)^{2}}{20}=29.1$. The degrees of freedom are $\mathrm{df}=5-1=4$. Using Table D , the P-value is less than 0.0005 . CONCLUDE: We reject the null hypothesis. There is strong evidence that the locations are not all equally likely to be chosen. (d) PLAN: Let p denote the proportion that choose the center location. We want to know if the center location is
chosen more often than it would be if all locations were chosen randomly. Test the hypotheses $H_{0}: p=0.2$ against $H_{\mathrm{a}}: p>0.2$ using a significance test for a population proportion. SOLVE: The sample proportion is $\hat{p}=\frac{34}{100}=0.34$. The test statistic is $z=$ $\frac{0.34-0.2}{\sqrt{\frac{0.2(0.8)}{100}}}=3.5$ and, using Table C, the P-value is less than 0.0002. CONCLUDE: Reject the null hypothesis. There is strong evidence that the item in the center is chosen more often than those at other locations.
25.18 Letting p_{1} denote the proportion of people age 16 to 29 cited for not wearing seatbelts, and similarly defining p_{2} and p_{3} for the other age groups, we test $H_{0}: p_{1}=$ $0.328, p_{2}=0.594, p_{3}=0.078$ versus H_{a} : not all proportions are equal to the population proportion of not wearing seat belts. The details of the computation are shown in the table. The expected counts are found by multiplying the expected frequencies by 803 (the total number of observations). The difference is significant: $\chi^{2}=119.84, \mathrm{df}=2$, and $P<0.0005$ (using software, $P=0.000$ to three decimal places). The largest contribution to the statistic comes from the youngest age group, which is cited more frequently than we would have expected under the hypothesis of no association.

	Expected Frequency	Observed Count	Expected Count	$O-E$	$\frac{(O-E)^{2}}{E}$
16 to 29	0.328	401	263.384	137.616	71.9032
30 to 59	0.594	382	476.982	-94.982	18.9139
60 or Older	0.078	20	62.634	-42.634	29.0203

25.19 STATE: Are all 12 astrological signs equally likely? PLAN: We test H_{0} : $p_{1}=$ $p_{2}=\cdots=p_{12}=1 / 12$ versus H_{a} : the 12 astrological-sign birth probabilities are not equally likely. SOLVE: There are 2402 subjects in this sample. Under H_{0}, we expect $2402 / 12=200.17$ per sign, so all cells have expected counts greater than 5 and a chi-square test is appropriate. The test statistic is: $\chi^{2}=\frac{(205-200.17)^{2}}{200.17}+$ $\frac{(174-200.17)^{2}}{200.17}+\cdots+\frac{(198-200.17)^{2}}{200.17}=18.34$. With df $=12-1=11$, the P-value is $0.05<P<0.10$ (using Table D). CONCLUDE: There is little evidence that some astrological signs are more likely in birth than others. That is, there is little to no support for a conclusion that astrological signs are not equally likely.
25.20 (b) 9.37\%.
$\mathbf{2 5 . 2 1}$ (c) 22.3%. The number of current smokers in the study was 404 , so we get $90 / 404$, or 22.3%.
25.22 (b) $14.2 \% .90 /(90+545)$, or 14.2%.
25.23 (b) independence. The results are from classifying individuals in a single SRS.
25.24 (b) 47.7. The total number of individuals in the study was 4310, so the expected count is $(25+484)(404) / 4310=47.7$.
25.25 (a) 10.8. $\frac{(25-47.7)^{2}}{47.7}=10.8$.
25.26 (a) 4. $(r-1)(c-1)=(5-1)(2-1)=4$.
25.27 (a) the distributions of health rating are the same for smokers and nonsmokers.
25.28 (c) the distributions of health rating are different for smokers and nonsmokers.
25.29 (c) less than 0.0005. Using Table D, we find $P<0.0005$.
$\mathbf{2 5 . 3 0}$ (c) there is a relationship between smoking status and how people rate their health.
25.31 (a) and (b) STATE: We compare rates of success at smoking cessation in three groups. PLAN: B denotes the bupropion group, P the placebo group, and C the Chantix ${ }^{\circledR}$ group. First, we'll construct a confidence interval for the difference in success proportions between the bupropion group and the placebo group. Then, we'll conduct a test for overall equality of success rates. SOLVE: The sample proportions are $\hat{p}_{\mathrm{B}}=0.2948$ and $\hat{p}_{\mathrm{P}}=0.1773$. The standard error is $S E=0.0325$, so the large-sample 95% confidence interval for $p_{\mathrm{B}}-p_{\mathrm{P}}$ is $\hat{p}_{\mathrm{B}}-\hat{p}_{\mathrm{P}} \pm 1.96 S E=$ $0.1175 \pm 0.0637=0.0538$ to 0.1812 . The sample proportion for Chantix ${ }^{\circledR}$ is $\hat{p}_{\mathrm{C}}=$ 0.4403. Now, to test $H_{0}: p_{\mathrm{C}}=p_{\mathrm{B}}=p_{\mathrm{P}}$ versus H_{a} : not all proportions are equal, we perform a chi-square test. Note that all of the expected cell counts are more than five (the smallest is 100.47), and trials are clearly independent, so such a test is appropriate. We have $\chi^{2}=56.992, \mathrm{df}=2$, and $P<0.0005$ (from software, $P=0.0000$ to four places), so the evidence for a relationship among treatments (placebo, bupropion, or Chantix ${ }^{\circledR}$) and cessation of smoking is overwhelming. Examining the output, we see that more Chantix ${ }^{\circledR}$ users than expected and fewer placebo users than expected were successful. CONCLUDE: The treatments are not equally successful at helping people to quit smoking. The Chantix ${ }^{\circledR}$ group, in particular, has a higher success rate. We also conclude that the placebo and bupropion success rates are not the same.

	Chantix	Bupropion	Placebo	Total
No	155	97	61	313
	107.49	100.47	105.05	
Yes	197	232	283	712
	244.51	228.53	238.95	

Chi-Sq = 56.992, $\mathrm{DF}=2, \mathrm{P}$-Value $=0.000$
(c) This is a test of homogeneity, because the subjects were randomly assigned to three different treatments (they can be considered three separate samples).
25.32 (a) These were separate random samples, so this is a test of homogeneity.
(b) STATE: We want to determine if the distribution of age for those with a landline differs from the distribution of those with only a cell phone. PLAN: We test H_{0} : the distribution of age groups is the same for landline and cell-only individuals versus H_{a} : the distributions are different. SOLVE: All expected cell counts are more than five, so the guidelines for the chi-square test are satisfied. We have $\chi^{2}=1032.892$, $\mathrm{df}=3$, and $P<0.0005$. CONCLUDE: There is strong evidence of an association between age group and the type of telephone. In fact, the younger age groups were much more likely than expected to have only cell phones.

	Cell Only	Landline	All
Age18-29	374	335	709
	52.75	47.25	100.00
	115	594	709
Age30-49	587.04	113.20	$*$
	347	1242	1589
	21.84	78.16	100.00
	257	1332	1589
Age50-64	31.63	6.10	$*$
	146	1625	1771
	8.24	91.76	100.00
Age65up	286	1485	1771
	68.75	13.26	$*$
	36	1481	1517
	2.37	97.63	100.00
	245	1272	1517
All	178.51	34.42	$*$
	903	4683	5586
	16.17	83.83	100.00
	903	4683	5586
	$*$	$*$	$*$

Cell Contents: Count \% of Row Expected count Contribution to Chi-square

Pearson Chi-Square $=1032.892$, DF $=3, \mathrm{P}-$ Value $=0.000$
25.33 (a) A total of 174 of the 871 students used OTC stimulants; $\hat{p}=0.1998$. The sample counts are large, so we can use $\hat{p} \pm 1.96 S E$ for the confidence interval, which becomes $0.1998 \pm 1.96 \sqrt{ } \frac{0.1998(1-0.1998)}{871}$, or 0.1732 to 0.2264 . (b) A graph comparing the distributions is given. The conditional distributions are given in the
second row for each cell in the Minitab output shown. It appears that those who use OTC medications are less likely to have optimal sleep and more likely to have poor sleep than those who do not use these medications.

(c) We test H_{0} : there is no association between taking OTC medications to stay awake and sleep quality versus H_{a} : there is an association between OTC medications to stay awake and sleep quality. From the Minitab output in part (b), we have $\chi^{2}=18.504$, and $P<0.0005$. We conclude that there is an association between taking over-the-counter medications to stay awake and sleep quality.

Score				
Count Expected Cell Chi^2	2	3	4	Total
$$	5	21	24	50
	6	21	23	
	0.1667	0.0000	0.0435	
$\stackrel{\text { Surgery }}{ }$	7	21	22	50
	6	21	23	
	0.1667	0.0000	0.0435	
Total	12	42	46	100

25.34 Test the hypotheses H_{0} : the distribution of Kellner-Lawrence score is the same for the nonsurgical and surgical treatment groups versus H_{a} : the distribution of scores is not the same for the two groups. JMP output for the chi-square test of homogeneity is provided. The expected counts are all greater than 5 , so it is safe to perform a chi-square test. The test statistic is $\chi^{2}=0.1667+0+\cdots+0.0435=$ 0.420 . With $\mathrm{df}=2$, the P-value is large (using technology, we get $P=0.81$). There is essentially no evidence to suggest the distribution of scores is not the same for the two groups.
25.35 (a) We test $H_{0}: p_{\mathrm{G}}=p_{\mathrm{NG}}$ versus $H_{a}: p_{\mathrm{G}} \neq p_{\mathrm{NG}}$. With $\hat{p}_{\mathrm{G}}=\frac{36}{91}=0.395604$ and $\hat{p}_{\mathrm{NG}}=\frac{578}{2014}=0.286991$, the pooled proportion is $\hat{p}=0.291686$. The standard error is $S E=0.048713$. Hence, $z=\frac{\hat{p}_{\mathrm{G}}-\hat{p_{\mathrm{NG}}}}{S E}=2.23$, and $P=0.0258$. (b) By inspection of the output given, we see that all expected cell counts exceed 5, and use of a chisquare test is appropriate. We find $\chi^{2}=4.971$ with $\mathrm{df}=1$. From software, $P=0.026$.

	Fight	No Fight	All
No	578	1436	2014
	587.5	1426.5	2014.0
Yes	0.1522	0.0627	$*$
	36	55	91
	26.5	64.5	91.0
	3.3690	1.3874	$*$

```
Cell Contents: Count
    Expected count
    Contribution to Chi-square
Pearson Chi-Square = 4.971, DF = 1, P-Value = 0.026
```

(c) $z^{2}=(2.22965)^{2}=4.971$, which is equal to χ^{2}. Obviously, P-values also agree. (d) We would use a one-sided z test. The chi-square test is inherently two-sided, because it tests for general association instead of for a particular direction of association.
25.36 (a) The two-way table is provided. We test $H_{0}: p_{1}=p_{2}$ versus $H_{a}: p_{1}<p_{2}$.

	Tumor	No Tumor
Group 1	11	19
Group 2	22	8

(b) The z test must be used, because the chi-square procedure measures evidence in support of any association and is implicitly two-sided. We have $\hat{p}_{1}=0.3667$ and $\hat{p}_{2}=0.7333$. The pooled proportion is $\hat{p}=(11+22) /(30+30)=0.55$ and the standard error is $S E=0.12845$, so $z=-2.85$ and $P=0.0022$. We have strong evidence that rats that can stop the shock (and, therefore, presumably have better attitudes) develop tumors less often than rats that cannot (and, therefore, are presumably depressed).
25.37 (a) This was a single sample and individuals are tabled by two categorical variables, so this is a test of independence. (b) STATE: Is there a difference between how men and women assess their chances of being rich by age 30? PLAN: We test H_{0} : there is no relationship between sex and self-assessment of chances of being rich versus H_{a} : there is some relationship between these factors. SOLVE: Examining the Minitab output in Figure 25.8, we see that conditions for use of the chi-square test are satisfied because all expected cell counts exceed 5 (the smallest is 95.2). We have $\chi^{2}=43.946$ with $\mathrm{df}=4$, leading to $P<0.0005$ (using Table D). CONCLUDE: Overall, men give themselves a better chance of being rich. This difference shows up most noticeably in the second and fifth rows of the table: Women were more likely to say "some chance, but probably not," whereas men more often responded "almost certain." There was virtually no difference between men and women in the "almost no chance" and "a 50-50 chance" responses, and little difference in the "a good chance" response.
25.38 STATE: Does sexual content of ads differ in magazines aimed at different audiences? PLAN: We test H_{0} : there is no relationship between sexual content of ads and magazine audience versus H_{a} : there is some relationship between sexual content of ads and magazine audience. SOLVE: Examining the Minitab output in Figure 25.9, we see that conditions for use of the chi-square test are satisfied because all expected cell counts exceed 5 (the smallest is 82.4). We have $\chi^{2}=$ 80.874 with $\mathrm{df}=2$, leading to $P<0.0005$. CONCLUDE: Magazines aimed at women are much more likely to have sexual depictions of models than the other two types of magazines. Specifically, about 39\% of ads in women's magazines show sexual depictions of models, compared with 21% and 17% of ads in general-audience and men's magazines, respectively. The two women's chi-squared terms account for over half of the total chi-square value.
25.39 (a) We compare the percent of dogs in each condition type (I, II, III) that make a specified number of errors. The table summarizes the data. We see that under Type I condition (social-communicative), dogs tend to make more errors, whereas under Type III condition (nonsocial), dogs tend to make fewer errors.

	0	1	2	3
Type I	0.0%	25.0%	25.0%	50%
Type II	41.7%	25.0%	8.3%	25%
Type III	66.7%	16.7%	16.7%	0%

(b) We have many cells with expected cell counts lower than 5 . We also have two zeroes in the table. Also, each dog had up to three trials, so observations are not independent. (c) Software should warn users against using the chi-square test. The software package Minitab does provide such a warning.
25.40 We need cell counts, not just percents. If we had been given the number of travelers in each group-leisure and business-we could have estimated this.
25.41 Presumably, many of the individuals were included in more than one category of alcohol and drug use. The chi-square test should only be used when individuals are classified to a specific category.
25.42 In order to do a chi-square test, each subject can only be counted once. In this experiment, each individual is represented for both treatments (carob and chocolate).
25.43 (a) Let p denote the proportion of Americans over the age of 18 who use a social networking site on their phone. The sample proportion is $\hat{p}=\frac{636}{1918}=0.3316$. We can construct a large-sample confidence interval, since the number of successes and failures are large. The 99% confidence interval is $0.3316 \pm$

$$
2.576 \sqrt{\frac{0.3316(1-0.3316)}{1918}}=0.3039 \text { to } 0.3593 \text {, or } 30.39 \% \text { to } 35.93 \% . \text { (b) The }
$$ conditional distributions are shown in the second row of each cell in the provided JMP output. A bar graph is also provided. The table and graph show younger individuals (under age 50) are much more likely to use social networking on their phone than older individuals (age 50 and over).

Count					No	Yes	Total
Col \%							
Expected							
Cell Chi^2							
$18-29$	112	228	340				
	8.74	35.85					
	227.258	112.742					
	58.4548	117.829					
$30-49$	281	281	562				
	21.92	44.18					
	375.643	186.357					
$50-64$	23.8454	48.0657					
	481	106	587				
	37.52	16.67					
	392.353	194.647					
$65+$	20.0284	40.3717					
	408	21	429				
	31.83	3.30					
	286.746	142.254					
Total	51.2742	103.355					

(c) Test the hypotheses H_{0} : there is no relationship between age and phone use for social networking versus H_{a} : there is some relationship between age and phone use for social networking. We can do a chi-square test because all cells have at least five expected counts. The value of the test statistic is $\chi^{2}=58.45+117.83+\cdots+$ $103.35=463.224$. The degrees of freedom are $\mathrm{df}=(r-1)(c-1)=$ $(4-1)(2-1)=3$. If the null hypothesis were true, the mean of the test statistic would be 3 . Our observed test statistic is much larger than 3 . The P-value is approximately zero. There is strong evidence of a relationship between age and phone use for social networking. (d) The cells that contribute most to the chisquared statistic are the "18-29 and Yes" cell and the "65+ and Yes" cell. For the 1829 group, we observe a much higher number of Yes responses than expected if the null were true. For the 65+ group, we observe a much smaller number of Yes responses than expected if the null were true. It appears younger individuals are much more likely to use social networking on their phone than older individuals.
25.44 (a) We test H_{0} : there is no relationship between degree held and service attendance versus H_{a} : there is some relationship between degree held and service attendance. Examining the Minitab output shown, $\chi^{2}=14.19$ with $\mathrm{df}=3$, and P value $=0.003$. There is strong evidence of an association between degree held and service attendance.

	HS	JColl	Bachelor	Graduate	All
No	880	101	232	105	1318
Yes	842.7	107.3	248.9	119.2	1318.0
	400	62	146	76	684
	437.3	55.7	129.1	61.8	684.0

(b) The new table is shown below. We find $\chi^{2}=0.73$ on $\mathrm{df}=2$, and $P=0.694$. In this table, we find no evidence of association between religious service attendance and degree held.

	HS	Bachelor	Graduate	All
No	101	232	105	438
	98.9	229.3	109.8	438.0
Yes	62	146	76	284
	64.1	148.7	71.2	284.0
Cell Contents:		Count		
		Expected	count	

(c) The new table is shown. We have $\chi^{2}=13.4$ with $\mathrm{df}=1 . P=0.000$ to three decimal places (it's actually 0.0002). There is overwhelming evidence of association between level of education (high school versus beyond high school) and religious service attendance.

(d) In general, we find that people with degrees beyond high school attend services more often than expected; people with high school degrees attend services less often than expected. Of those with high school degrees, 31.3% attended services, and the percents are $38 \%, 38.6 \%$, and 42%, respectively, for people with junior college, bachelor, and graduate degrees.
25.45 The conditional distributions and necessary output for the chi-square test are included in the following JMP output. The frequencies are very similar for males and females. There are slightly more females who have experienced either occasional or frequent bullying, whereas males have a slightly higher percent of never being bullied. Test the hypotheses H_{0} : there is no relationship between sex and frequency of bullying versus H_{a} : there is some relationship between sex and frequency of bullying. We can do a chi-square test because the expected counts are all much larger than 5 . The degrees of freedom are $\mathrm{df}=(2-1)(3-1)=2$. The test statistic is $\chi^{2}=1.842+1.1941+\cdots+0.4059=7.007$. Using technology, the P-value is $P=$ 0.0301 . There is some evidence that the distribution of frequency of being bullied is not the same for males and females.

Bullied				
Count Row \% Expected Cell Chi^2	Never	Occasio nal	Freque nt	Total
female	1526	1281	629	3436
\times	44.41	37.28	18.31	
$\stackrel{\sim}{\sim}$	1579.95	1242.48	613.571	
	1.8420	1.1941	0.3880	
male	1564	1149	571	3284
	47.62	34.99	17.39	
	1510.05	1187.52	586.429	
	1.9272	1.2493	0.4059	
Total	3090	2430	1200	6720

25.46 STATE: Is there a relationship between race and parental opinion of schools? PLAN: We use a chi-square test to test H_{0} : there is no relationship between race and opinion about schools versus H_{a} : there is some relationship between race and opinion about schools. SOLVE: All expected cell counts exceed 5 (the smallest is 21.26), so use of a chi-square test is appropriate. We find that $\chi^{2}=22.426$ with $\mathrm{df}=$ 8 , and $P=0.004$. CONCLUDE: We have strong evidence of a relationship between race and opinion of schools. Specifically, according to the sample (as illustrated in the table given), blacks are less likely and Hispanics are more likely to consider schools to be excellent, while Hispanics and whites differ in the percent considering schools good. Also, a higher percent of blacks rated schools as fair.

Race				
Count	Black	Hispani	White	Total
Expected				
Cell Chi^2				
Excellent	12	34	22	68
	22.7041	22.7041	22.5917	
	5.0466	5.6200	0.0155	
Good	69	55	81	205
	68.4463	68.4463	68.1074	
	0.0045	2.6415	2.4405	
$\stackrel{\sim}{4}^{\text {¢ }}$ Fair	75	61	60	196
	65.4413	65.4413	65.1174	
	1.3962	0.3014	0.4022	
Poor	24	24	24	72
	24.0397	24.0397	23.9207	
	0.0001	0.0001	0.0003	
Don't know	22	28	14	64
	21.3686	21.3686	21.2628	
	0.0187	2.0580	2.4808	
Total	202	202	201	605

25.47 (a) A chi-square test of independence should be used, because we have an SRS and each individual was classified according to the eGFR and hearing loss. (b) The JMP output for the chi-square test is provided. The hypotheses are H_{0} : there is no relationship between hearing loss and eGFR versus H_{a} : there is some relationship between hearing loss and eGFR. We can do a chi-square test because all expected counts are at least 5 . The test statistic is $\chi^{2}=555.16$ with $\mathrm{df}=4$. Using technology, the P-value is $P<0.0001$ (using software, with Table D, we get $P<$
0.0005). There is strong evidence of a relationship between hearing loss and eGFR. Based on the observed conditional percents, it appears individuals with hearing loss are more likely to have eGFR at least 90 than those without hearing loss. Those without hearing loss are more likely to have eGFR less than 45 than those with hearing loss.

(c) Age is a quantitative variable. It could also be a lurking variable because it may be related to both eGFR and hearing loss. (d) If the relationship is the same for each age group, then age is not contributing to the relationship between eGFR and hearing loss.
25.48 PLAN: We compare how the number of children per group has changed from 2013 through 2015 at the Monterey Bay Aquarium. We will create a bar graph and do a chi-square test of homogeneity (each year is a separate sample). SOLVE: To examine any possible change in the number of children per group, we first look at a bar graph of the data (given). The graph indicates that the number of children has been pretty steady across the three years, with the exception that far fewer had 3 or more children in 2015 than in the earlier years. JMP output for the chi-square test is provided. Note that all expected counts are above 5, so it is safe to use the chisquare test. The test statistic is $\chi^{2}=106.319$, the degrees of freedom are $\mathrm{df}=$ $(4-1)(3-1)=6$, and the P-value is $P<0.0001$. CONCLUDE: There is strong evidence that the distribution of the number of children has changed over the threeyear period. Looking at the bar graph and conditional percents, it appears that, in 2015, people were more likely to go to the aquarium with no kids and less likely to go with more than two kids than in previous years.

Count	2013	2014	2015	Total
Col \%				
Expected				
Cell Chi^2				
0	1855	1751	1998	5604
	52.19	50.11	59.45	
	1913.4	1881.1	1809.5	
	1.7827	8.9980	19.6374	
1	585	636	591	1812
$\mathbf{0}$	16.46	18.20	17.58	
\boldsymbol{y}	618.681	608.236	585.083	
\mathbf{z}	1.8336	1.2673	0.0598	
2	599	601	483	1683
	16.85	17.20	14.37	
	574.636	564.934	543.43	
	1.0330	2.3024	6.7199	
over2	515	506	289	1310
	14.49	14.48	8.60	
	447.28	439.729	422.991	
Total	10.2530	9.9876	42.4442	

25.49 There are 2512 adults in the sample. Of these, 502 are Independent. Therefore, $\hat{p}=502 / 2512=0.1998$, and $S E=\sqrt{ } \frac{0.1998(1-0.1998)}{2512}=0.008$. A 95% confidence interval for the proportion of Independent adults is $0.1998 \pm$ $1.96(0.008)=0.1841$ to 0.2155 , or 18.41% to 21.55%.
25.50 STATE: How do the conditional distributions of political leaning, given education, compare? PLAN: We compare the percents leaning toward each party within each education group. SOLVE: A table of output from JMP is provided. At each education level, we compute the percent leaning toward each party. CONCLUDE: At every education level, people leaning Democrat outweigh people leaning Republican. The difference is greatest at the "none" level of education, followed by the "graduate" level of education.

Education						
Count Col \%	None	Highsch ool	JrColleg e	Bachelo	Graduat e	Total
$\tilde{y}_{\underline{\underline{y}}}^{\text {n }} \text { Democrat }$	145	565	80	217	155	162
	70.39	58.01	55.56	56.22	65.13	
Republican	61	409	64	169	83	78
	29.61	41.99	44.44	43.78	34.87	
Total	206	974	144	386	238	1948

25.51 PLAN: We will find conditional distributions for political leaning at each level of education and perform a chi-square test on the full table, testing the null hypothesis of no relationship between education level and political preference. SOLVE: The conditional distributions are tabulated. Only 1 of 40 cell counts is less than five, so it is safe to use a chi-square test. Using software, the chi-square statistic is $\chi^{2}=106.239$ with $\mathrm{df}=28$. The P-value is $P<0.0001$. CONCLUDE: Student observations about the full table will vary. Notice that among the "none" education group, there is a much larger proportion of Independents, and in the "graduate" education group, there is a very high percent of Democrats and people who lean Democrat. The general result of this exercise, where we find that the differences among party affiliations vary across levels of education, is consistent with our conclusion in Exercise 25.49.

25.52 and 25.53 are Web-based exercises.

