
Chapter 17 – Tests of Significance: The Basics 
 
17.1 (a) If 𝜇𝜇 = 550, the sampling distribution is approximately Normal, with mean 𝜇𝜇 
= 550 and standard deviation 𝜎𝜎

√𝑛𝑛
= 120

√250
= 7.59. The density curve is provided. 

 

 
 
(b) and (c) Both points are marked on the figure in part (a). A sample mean 𝑥̅𝑥 = 542 
lies just slightly further than 1 standard deviation below the mean, while 𝑥̅𝑥 = 532 
lies toward the low tail of the curve. If 𝜇𝜇 = 550, observing a value of 542 is not too 
surprising, but observing a value of 532 is much less likely, which provides some 
evidence that 𝜇𝜇 < 550. 
 
17.2 (a) If 𝜇𝜇 = 1084.80, the sampling distribution is approximately Normal, with 
mean 𝜇𝜇 = 1084.80 and standard deviation 𝜎𝜎

√𝑛𝑛
= 0.25

√6
= 0.102. The density curve is 

provided. 
 

 
 
(b) Both points are marked on the figure in part (a). A sample mean 𝑥̅𝑥 = 1084.90 
lies fairly close to the middle of the distribution, while 𝑥̅𝑥 = 1084.50 lies nearly 3 
standard deviations below the mean. If 𝜇𝜇 = 1084.80, observing a value of 1084.90 is 



not too surprising, but observing a value of 1084.50 is much less likely, which 
provides some evidence that 𝜇𝜇 ≠ 1084.80℃. 
 
17.3 𝐻𝐻0: 𝜇𝜇 = 550 vs. 𝐻𝐻a: 𝜇𝜇 < 550. Part (c) of Exercise 17.1 refers to providing 
evidence that the mean score is less than 550, so we need to use the one−sided test 
with the less than alternative hypothesis. 
 
17.4 𝐻𝐻0: 𝜇𝜇 = 1084.80 vs. 𝐻𝐻a: 𝜇𝜇 ≠ 1084.80. Part (b) of Exercise 17.2 refers to 
providing evidence that the true melting point differs from 1084.80℃, so we need to 
use the two−sided test. 
 
17.5 𝐻𝐻0: 𝜇𝜇 = 75 vs. 𝐻𝐻a: 𝜇𝜇 < 75. The professor suspects that this section’s students 
perform worse than the population of all students in the class, on average. 
 
17.6 𝐻𝐻0: 𝜇𝜇 = $35,713 vs. 𝐻𝐻a:𝜇𝜇 ≠ $35,713. This is a two−sided test, because you 
wonder if the full−time income for women high school graduates in your school 
differs from the national average. 
 
17.7 Hypotheses are statements about parameters, not statistics. The research 
question should not be about the sample mean (𝑥̅𝑥), but should be about the 
population mean, 𝜇𝜇. 
 
17.8 (a) With 𝜎𝜎 = 1 and n = 10, the standard deviation is 𝜎𝜎

√𝑛𝑛
= 1

√10
= 0.3162, so when 

𝜇𝜇 = 0, the distribution of 𝑥̅𝑥 is 𝑁𝑁(0, 0.3162). (b) The P–value is 𝑃𝑃 = 𝑃𝑃(𝑥̅𝑥 ≥ 0.3) =
𝑃𝑃(𝑍𝑍 ≥ 0.3 − 0

0.3162
) = 0.1711. 

 
17.9 (a) With 𝜎𝜎 = 60 and n = 18, the standard deviation is 𝜎𝜎

√𝑛𝑛
= 60

√18
= 14.1421, so 

when 𝜇𝜇 = 0, the distribution of 𝑥̅𝑥 is 𝑁𝑁(0, 14.1421). (b) The P–value is 𝑃𝑃 =
2𝑃𝑃(𝑥̅𝑥 ≥ 17) = 2𝑃𝑃(𝑍𝑍 ≥ │ 17 − 0

14.1421
│) = 0.2302. 

 
17.10 If the drug lorcaserin had no effect, then we would expect the average weight 
loss for the treatment group (on lorcaserin) to be the same as the average weight 
loss for the control group (on placebo). Of course, by random chance alone, there 
will be some difference in these average weight losses. The P–value P < 0.001 says 
that if lorcaserin is ineffective, then the chance of observing as large an increased 
weight loss as the difference observed (5.8 kg − 2.2 kg = 3.6 kg) would happen by 
chance alone less than 1 in 1000 times. That is, we have seen something that we do 
not expect to occur by random chance, and this causes us to doubt the original 
assumption that lorcaserin is ineffective. Random chance alone does not explain the 
additional weight loss in the lorcaserin group. 
 
17.11 (a) One realization from the applet is provided. The P–value for 𝑥̅𝑥 = 542 is 
0.1459. (Calculating the P–value by hand with rounding similar to other exercises, 



one finds P–value = 0.1469.) The P–value is not significant at either α = 0.05 or α = 
0.01. 

 
 
(b) One realization from the applet is provided. The P–value for 𝑥̅𝑥 = 532 is 0.0089. 
This is significant at both α = 0.05 and α = 0.01. 

 
 
(c) If μ = 550 (that is, if 𝐻𝐻0 were true), observing a value similar to 542 would not be 
too surprising, but observing 532 is not very likely at all, which provides strong 
evidence that μ < 550. 
 
17.12 (a) One realization from the applet is provided. The P–value for 𝑥̅𝑥 = 1084.90 
is 0.3272. This is not significant at either α = 0.05 or α = 0.01. 



 
 
(b) One realization from the applet is provided. The P–value for 𝑥̅𝑥 = 1084.50 is 
0.0033. This is significant at both α = 0.05 and α = 0.01. 

 
 
(c) If μ = 1084.80 (that is, if 𝐻𝐻0 were true), observing a value similar to 1084.90 
would not be too surprising. Observing 1084.50 is much less likely; this extreme 
observation provides strong evidence that 𝜇𝜇 ≠ 1084.80℃. 
 
17.13 (a) 𝑧𝑧 = 0.3 − 0

1 √10⁄ = 0.3 − 0
0.3162

= 0.9488. (b) 𝑧𝑧 = 1.02 − 0
1 √10⁄ = 1.02 − 0

0.3162
= 3.226. (c) 𝑧𝑧 =

17 − 0
60 √18⁄ = 17 − 0

14.1421
= 1.2021. Note that in part (c) the test is two−sided, while in parts 

(a) and (b), it is one−sided. 
 
17.14 STATE: Is there evidence that the true melting point of the copper sample is 
not 1084.80℃? PLAN: Let 𝜇𝜇 be the sample’s true melting point (the mean of all 
measurements of its melting point). We test 𝐻𝐻0: 𝜇𝜇 = 1084.80 vs. 𝐻𝐻a:𝜇𝜇 ≠ 1084.80 
using the two−sided alternative, because we are concerned with deviations in either 
direction. SOLVE: The problem states that we have an SRS from a Normal 
distribution. From the data, 𝑥̅𝑥 = 1084.80. The standard deviation of 𝑥̅𝑥 is 𝜎𝜎

√𝑛𝑛
= 0.25

√6
=

0.1021, so the test statistic is 𝑧𝑧 = 1084.80 − 1084.80
0.1021

= 0. The P–value is 2𝑃𝑃(𝑍𝑍 ≥ 0) = 1. 



CONCLUDE: This sample gives absolutely no evidence that the true melting point of 
the copper sample differs from 1084.80℃. 
 
17.15 STATE: Is there evidence that the average tip percentage is less than 20% 
when bad news is received (such as a bad weather prediction)? PLAN: Let μ be the 
average tip percentage for all customers receiving bad news. We test 𝐻𝐻0: μ = 20 
against 𝐻𝐻a: μ < 20, since we wonder if the value of μ is less than 20%. SOLVE: We 
have a random sample of n = 20 customers and were told to assume tips have a 
Normal distribution. We observe 𝑥̅𝑥 = 18.19%. The standard deviation of 𝑥̅𝑥 is 𝜎𝜎

√𝑛𝑛
=

2
√20

= 0.4472, so the test statistic is 𝑧𝑧 = 18.19 − 20
0.4472

= −4.05. The P−value is 𝑃𝑃(𝑍𝑍 ≤
−4.05) ≈ 0. CONCLUDE: There is overwhelming evidence that the average tip 
percentage, when bad news is delivered, is lower than the average tip percentage 
overall. Random chance does not explain the small value of 𝑥̅𝑥 observed. 
 
17.16 Using Table C, z = 1.65 is significant at α = 0.05, because it is larger than 
1.645. It is not significant at α = 0.01, because it is smaller than 2.326. 
 
17.17 Using Table C, z = 1.65 is not significant at α = 0.05, because it is not larger 
than 1.960 or smaller than −1.960. It is also not significant at α = 0.01, because |z| is 
smaller than 2.576. (If z is not significant at a particular α, it will also be not 
significant at a smaller α.) 
 
17.18 (a) 𝑧𝑧 = 0.4365 − 0.5

0.2887 √100⁄ = −2.20. (b) This result is significant at the 5% level, 
because z < −1.96. (c) It is not significant at the 1% level, because −2.576 < 𝑧𝑧 <
2.576. (d) This value of z is between −2.054 and −2.326, so the P–value is between 
0.02 and 0.04 (because the alternative is two−sided). 
 
17.19 (a) true, of the test statistic taking a value as extreme as or more extreme 
than that actually observed is 0.011. This is the definition of a P–value. 
 
17.20 (b) statistically significant at 𝛼𝛼 = 0.05 but not at 𝛼𝛼 = 0.01. P = 0.011 is less 
than 0.05, but not 0.01. 
 
17.21 (b) statistically significant at 𝛼𝛼 = 0.05 but not at 𝛼𝛼 = 0.01. The P–value for z = 
2.29 is 0.0110 (assuming that the difference is in the correct direction; that is, 
assuming that the alternative hypothesis was 𝐻𝐻a: 𝜇𝜇 > 𝜇𝜇0). 
 
17.22 (b) z = −0.577. 𝑧𝑧 = 19.667 − 20

1 √3⁄ = −0.577. 
 
17.23 (a) 𝐻𝐻0: 𝜇𝜇 = 18. The null hypothesis states that μ takes on the “default” value, 
18 seconds. 
 



17.24 (b) 𝐻𝐻a: 𝜇𝜇 < 18. The researcher believes that loud noises will make the rats 
complete the maze faster (decrease the completion time), so the alternative is 
one−sided. 
 
17.25 (c) neither of the above is true. A small P–value means we should not (or 
should rarely) find an observed difference as large or larger than what was seen in 
𝐻𝐻0 is true. The P–value does not tell us whether the difference seen is “large” or 
“practically important,” nor does it refer to the probability 𝐻𝐻0 is true. 
 
17.26 (c) All values for which |z| > 2.807. This is a two−sided alternative, so we have 
0.0025 in each tail of the Normal distribution, leading to |z| > 2.807. 
 
17.27 (a) All values for which z > 2.576. This is a one−sided alternative, so we have 
0.005 in the right tail of the Normal distribution, leading to z > 2.576. 
 
17.28 (a) 𝐻𝐻0: μ = 13 hours per week vs. 𝐻𝐻a: μ > 13 hours per week. (b) 𝑧𝑧 =
13.7 − 13
7.4 √463⁄ = 2.04. (c) P–value = 𝑃𝑃(𝑍𝑍 > 2.04) = 0.0207. There is strong evidence that 
students do claim to study more than 13 hours per week on the average. 
 
17.29 (a) We test 𝐻𝐻0: μ = 0 vs. 𝐻𝐻a: μ > 0. (b) 𝑧𝑧 = 2.35 − 0

2.5 √200⁄ = 13.29. (c) This value of z 
is far outside the range we would expect from the N(0, 1) distribution. Under 𝐻𝐻0, it 
would be virtually impossible to observe a sample mean as large as 2.35 based on a 
sample of 200 men. The sample mean is not explained by random chance, and we 
would easily reject 𝐻𝐻0. 
 
17.30 (a) We test 𝐻𝐻0: 𝜇𝜇 = 5.19 against 𝐻𝐻0: 𝜇𝜇 ≠ 5.19. The alternative is two−sided, 
because we had no prior belief about the direction of the difference. (That is, before 
looking at the data, we had no reason to expect that the mean for hotel managers 
would be either higher or lower than 5.19.) (b) With 𝑥̅𝑥 = 5.29, the test statistic is 
𝑧𝑧 = 5.29 − 5.19

0.78 √148⁄ = 1.56. (c) The P−value is 2𝑃𝑃(𝑍𝑍 > 1.56) = 0.1188. There is only weak 
evidence that hotel managers have a different mean femininity score than the 
general male population. Particularly when the large sample (n = 148) is taken into 
account, we suspect that male hotel managers don’t differ much from males in 
general (in this respect). 
 
17.31 “P = 0.005” means that 𝐻𝐻0 is not likely to be correct, but only in the sense that 
it provides a poor explanation of the data observed. It means that if 𝐻𝐻0 is true, a 
sample as contrary to 𝐻𝐻0 as our sample would occur by chance alone about 0.5% of 
the time, if the experiment was repeated over and over. However, it does not mean 
that there is a 0.5% chance that 𝐻𝐻0 is true. 
 
17.32 If the presence of pig skulls were not an indication of wealth, then differences 
similar to or bigger than those observed in this study would occur less than 1% of 
the time by chance. 



 
17.33 The person making the objection is confusing practical significance with 
statistical significance. In fact, a 5% increase isn’t a lot in a pragmatic sense. 
However, P = 0.03 means that random chance does not easily explain the difference 
observed. That is, there does seem to be an increase in mean improvement for those 
who expressed their anxieties, but the significance test does not address whether 
the difference is large enough to matter. Statistical significance is not practical 
significance. 
 
17.34 With P = 0.24, any difference in quiz scores “caused” by instructor sex is 
easily explained by random chance. In other words, observing a difference of this 
magnitude was about the same as observing two heads when tossing two fair coins. 
 
17.35 In the provided sketch, the “significant at 1%” region includes only the dark 
shading (z > 2.326). The “significant at 5%” region of the sketch includes both the 
light and dark shading (z > 1.645). When a test is significant at the 1% level, it 
means that if the null hypothesis were true, outcomes similar to (or more extreme 
than) those seen are expected in 0 or 1 of 100 repetitions of the experiment. When a 
test is significant at the 5% level, it means that if the null hypothesis were true, 
outcomes similar to (or more extreme than) those seen are expected in 5 or fewer of 
100 repetitions of the experiment. Significance at the 1% level implies significance 
at the 5% level (or at any level higher than 1%). The converse is false; something 
that occurs “5 or fewer times in 100 repetitions” is not necessarily as rare as 
something that happens “1 or fewer times in 100 repetitions,” so a test that is 
significant at the 5% level is not necessarily significant at the 1% level. Any z test 
statistic between 1.645 and 2.326 will be significant at the 5% level, but not at the 
1% level. 

 
 
17.36 (a) The researchers selected the alternative hypothesis after examining the 
data. The alternative hypothesis should be formulated before examining data, and 
especially should not be motivated by data. (b) The correct P–value is 2P(Z > 1.88) = 
2(0.0301) = 0.0602. 
 
17.37 Because a P–value is a probability, it can never be greater than 1. The correct 
P–value is 𝑃𝑃(𝑍𝑍 ≥ 1.33) = 0.0918. 
 
17.38 (a) STATE: Can we conclude that the mean strength μ of wood pieces differs 
from 32,500 pounds? PLAN: We test 𝐻𝐻0: μ = 32,500 against 𝐻𝐻a: μ ≠ 32,500 at the 𝛼𝛼 = 
0.10 level of significance. SOLVE: The sample mean is 𝑥̅𝑥 = 30,841 pounds. The test 



statistic is z = 30,841 − 32,500
3,000 √20⁄  = − 2.47. The P–value is P = 2𝑃𝑃(𝑍𝑍 ≤ −2.47) = 0.0136. 

CONCLUDE: There is enough evidence (by far) at the 𝛼𝛼 = 0.10 level of significance to 
conclude that the wood’s mean strength differs from 32,500 pounds. (b) STATE: Can 
we conclude that the mean strength μ of wood pieces differs from 31,500 pounds? 
PLAN: We test 𝐻𝐻0: μ = 31,500 against 𝐻𝐻a: μ ≠ 31,500 at the 𝛼𝛼 = 0.10 level of 
significance. SOLVE: The test statistic is z = 30,841 − 31,500

3,000 √20⁄  = − 0.98. The P−value is P = 
2𝑃𝑃(𝑍𝑍 ≤ −0.98) = 0.327. CONCLUDE: There is not enough evidence at the 𝛼𝛼 = 0.10 
level of significance to conclude that the wood’s mean strength differs from 31,500 
pounds. Random chance easily explains the sample mean’s distance from 31,500 
pounds, but not from 32,500 pounds. 
 
17.39 STATE: What is the mean percent change μ in spinal mineral content of 
nursing mothers? PLAN: We will test the hypotheses 𝐻𝐻0: μ = 0% against 𝐻𝐻a: μ < 0%. 
SOLVE: The sample mean is 𝑥̅𝑥 = −3.587%. The test statistic is z = −3.587 − 0

2.5 √47⁄ = −9.84, 
and the P–value is 𝑃𝑃(𝑍𝑍 ≤ −9.84) ≈ 0. CONCLUDE: There is overwhelming evidence 
that, on average, nursing mothers lose bone mineral. 
 
17.40 STATE: Is there evidence that the mean DMS threshold for untrained tasters 
is greater than 25 µg/L? PLAN: We test 𝐻𝐻0: µ = 25 µg/L vs. 𝐻𝐻a: µ > 25 µg/L. SOLVE: 
We find that 𝑥̅𝑥 = 29.4 µg/L, and the test statistic is z = 29.4 − 25

7 √10⁄  = 1.99, so the P −value 
is P (Z > 1.99) = 0.0233. CONCLUDE: This is strong evidence against 𝐻𝐻0 (at the α = 
0.05 level); we conclude that the untrained student’s mean threshold is greater than 
25 µg/L. 
 
17.41 (a) We test 𝐻𝐻0: µ = 0 vs. 𝐻𝐻a: µ > 0, where µ is the mean sensitivity difference 
in the population. (b) STATE: Does eye grease have a significant impact on eye 
sensitivity? PLAN: We test the hypotheses stated in part (a). SOLVE: The mean of the 
16 differences is 𝑥̅𝑥 = 0.10125, so the test statistic is z = 0.10125 − 0

0.22 √16⁄  = 1.84. The 
one−sided P–value for this value of z is P = 0.0329. CONCLUDE: The sample gives 
significant evidence (at α = 0.05) that eye grease increases sensitivity. 
 
17.42 (a) The margin of error for 90% confidence is 1.645(15/√72) = 2.908, so the 
interval is 128.07 ± 2.908 = 125.16 to 130.98. (b) The test statistic is z = 128.07 − 130

15 √72⁄  = 
−1.09, for which the two−sided P−value is P = 0.2757, which is greater than 0.10. (c) 
The test statistic is z = 128.07 − 131

15 √72⁄  = −1.66, for which the two−sided P–value is P = 
0.0969, which is (barely) less than 0.10. 
 
17.43 (a) Yes, because 6.4 does not fall in the 95% confidence interval, which is 
(6.5, 7.9). (b) No, because 6.6 falls in the 95% confidence interval. 
 
17.44 and 17.45 are Web–based exercises. 
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