9.2 Complex Zeros

- I can find all zeros of a polynomial including non-real complex zeros
- I can write a polynomial from its zeros
- I can do a linear factorization

Fundamental Theorem of Alg: an nth degree polynomial will have n complex zeros

(May be a combination of real and non-real complex. Some zeros may be repeated)

Complex Conjugates: complex imaginary factors come in conjugate pairs
(if 3 i is a zero, -3 i is also)

How many complex zeros does each function have? How many are real? How many are non-real?

$$
x^{2}+5 x-7
$$

$$
x^{3}+8
$$

$$
x^{2}+4
$$

Find all zeros of the following polynomial using the quadratic formula:

$$
\begin{array}{ll}
f(x)= & x^{2}+2 x+11 \\
a=1 & \frac{-2 \pm \sqrt{2^{2}-4(1)(1)}}{2(1)} \\
b=2 \\
c=11 & \frac{-2 \pm \sqrt{-40}}{2} \\
& \frac{-2 \pm 2 i \sqrt{10}}{2} \\
& -1 \pm 1 i \sqrt{10}
\end{array}
$$

Find all zeros of the following polynomial using the quadratic formula:

$$
\begin{gathered}
f(x)=x^{2}-x-4 \\
-1.5,2.5
\end{gathered}
$$

Find all zeros by factoring and using the quadratic formula

$$
\begin{aligned}
& f(x)=x^{3}-4 x^{2}+11 x \\
& \times\left(x^{2}-4 x+11\right) \\
& x=0 \quad \begin{array}{r}
a=1 \\
b=-4
\end{array} \\
& \frac{4 \pm \sqrt{16-44}}{2} \quad c=11
\end{aligned}
$$

