8-3

Solving Quadratics

Objective: I can solve quadratic equations by factoring and using the zero-product property. I can write a quadratic equation given the zeros or x-intercepts

> Vocabulary: Zeros/Roots, X-Intercepts, Zero-Product Propery, Solve,

The Zero-Product Property

(?)(??)=0

The Zero-Product Property

If $a b=0$, then $a=0$ or $b=0$ or both a and b are 0

Solve by factoring
$x^{2}+10 x+15=-6$

$$
x^{2}-5 x+4=4
$$

The length of a rectangle is 8 feet more than its width. If the area of the rectangle is 84 square feet, what are the dimensions of the rectangle?

$$
\begin{aligned}
& \text { Try to solve by factoring... } \\
& \qquad x^{2}-2 x-24=0
\end{aligned}
$$

What now?!

Quadratic Formula

$$
x=\frac{-\underline{b} \pm \sqrt{\underline{b}^{2}-4 \underline{a} \underline{c}}}{2 \underline{a}}
$$

$$
a x^{2}+b x+c
$$

Solve using the quadratic formula

$$
\begin{gathered}
\frac{3}{a} a^{2} \frac{-6}{b} \frac{a-34}{c}=0+\frac{+6 \pm \sqrt{\left.(-6)^{2}-4(3)\right)^{34}}}{2(3)} \\
4 n^{2}+11 n=15 \quad \frac{6 \pm \sqrt{36+408}}{6} \\
x=9,5,2.5
\end{gathered}
$$

