7-2 Factoring Polynomials

Objectives:

- I can factor a polynomial by GCF, grouping, and quadratic factoring.

Factor out the greatest common factor (GCF) of each polynomial.

$$
6 x^{3}+15 x^{2}+6 x
$$

$$
3 x\left(2 x^{2}+5 x+2\right)
$$

$2 x^{3}-20 x$

$$
2 x\left(x^{2}-10\right)
$$

$$
\begin{aligned}
& 14 x^{3} y^{2}+21 x^{2} y^{2}-7 x y^{2} \\
& 7 x y^{2}\left(2 x^{2}+3 x-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Factor by Grouping. } \\
& 4 x^{2}+6 x-2 x-3 \\
& 2 x\left(\frac{2 x+3)}{(2 x+3)}-\frac{1}{(2 x-1)}\left(\frac{2 x+3)}{1}\right)\right. \\
& x^{3}-3 x^{2}+x-3 \\
& x^{2}\left(\frac{x-3)}{(x-3)\left(x^{2}+1\right)}\right. \\
& (x-3)
\end{aligned}
$$

$$
\begin{aligned}
& x(x-21)+5(\underline{x-21}) \\
& (x-21)(x+5) \\
& 9 x^{2}+6 x+6 x+4 \\
& 3 x(3 x+2)+2(3 x+2) \\
& (3 x+2)(3 x+2)
\end{aligned}
$$

Factor each quadratic expression.

$$
x^{2}+6 x+8
$$

$$
(x+2)(x+4)
$$

$$
x^{2}-7 x+10(x-5)(x-2)
$$

$$
\therefore i_{1}
$$

$$
x^{2}-5 x+6
$$

$$
x^{2}-9 x+20
$$

$$
x^{2}-5 x+4
$$

$$
(x-1)(x-4)
$$

$$
x^{2}-3 x-10 \quad(x-5)(x+2)
$$

