6-2 Angles and Radians Review

Objectives:
6-2a: I can find co-terminal angles.
6-2b: I can find reference angles.
6-2c: I can convert from radians to degrees and vice versa.

Counter Clockwise rotation: Positive degree
Clockwise rotation: Negative degree

Coterminal Angles: Angles that share the same terminal side

Ex. 257 and -103

$$
\begin{aligned}
& 610^{\circ} \\
& 257+103=360 \\
& -103+360=257
\end{aligned}
$$

Draw an angle of rotation of 310°. In what quadrant is the terminal side of the angle?

On the same graph from the previous step, draw a positive coterminal angle. What is the angle measure of your angle?
(C)

On the same graph from the previous two steps, draw a negative coterminal angle. What is the angle measure of your angle?

Draw and give the measure of the new angle

A positive angle coterminal to 215° $<$

A negative angle coterminal to 75°

For each angle, find the nearest positive coterminal angle and the nearest negative coterminal angle.
$-102^{\circ} \quad 328^{\circ}$
19°
225°

CONVERTING DEGREES TO RADIANS

Multiply the number of degrees by $\left(\frac{\pi \text { radians }}{180^{\circ}}\right)$.

CONVERTING RADIANS TO DEGREES

Multiply the number of radians by $\left(\frac{180^{\circ}}{\pi \text { radians }}\right)$.

January 8, 2019

For each angle, find the nearest positive coterminal angle and the nearest negative coterminal angle.

11π
 6

$\frac{2 \pi}{3}$

Reference Angles: The acute angle formed

Given the angle, find the reference angle:

$$
\begin{array}{ccc}
330^{\circ} & 115^{\circ} & 460^{\circ} \\
\frac{2 \pi}{3} & \frac{7 \pi}{4} & -\frac{11 \pi}{6}
\end{array}
$$

