4-1 Defining and Evaluating

Logarithms

Objectives:
I understand that the logarithm is the inverse of an exponential.

I can convert between logarithm and exponential form.

$3^{\square}=9$

$$
\log _{3} 3^{x}=\log _{3} 9
$$

$$
x=\log _{3} 9
$$

words: 3 to the power of x is 9
$\log _{2} 2^{x}=\log _{2} 8$ $x=\log _{2} 8$

$$
\log _{2} 8=3
$$

words: 2 to the power

$$
\text { of } \bar{B} \text { is } 8
$$

$$
\begin{array}{lc}
5^{2}=\log _{5} 100 & \log _{5} 100 \\
x=\log _{5} 100 & \text { Words: } 5 \text { to the pones } \\
2.7 & \text { of } \square \text { is } 100
\end{array}
$$

$$
\begin{gathered}
\log _{3} \frac{1}{9}=-2 \quad \log _{b} b^{x}=\log _{b} a \\
x=\log _{b} a
\end{gathered}
$$

$$
b^{x}=a
$$

$\log _{b} a=x$ Logarithmic Equation
$\log _{b} a=x$

Words:

$$
b^{x}=a
$$

Is it possible for a logarithm to equal a negative number?

$$
\log _{b} a=0
$$

Is it possible for a logarithm to equal zero? $b^{0}=a$

Does $\log _{x} 0$ have an answer?
no
Does $\log _{x} 1$ have an answer?
yes!

Does $\log _{x} x^{5}$ have an answer?

$$
x^{\text {可 }}=x^{5}
$$

What is pi?

What is e?

$$
\log _{10}=\log
$$

$e=2.71$
Natural log $\log _{e}=\ln$

