3-1 Simplifying Radicals

- I can simplify radicals
- I can perform operations with radicals
- I know and can convert between radicals and fractional exponents

$$
\begin{aligned}
& \left(222^{2}\right)^{2} \\
& 2 a b^{2} \\
& 2 \cdot 2 \times x y^{3} 2 y \\
& 4 x^{2} y^{3} \sqrt[3]{2 y}
\end{aligned}
$$

Write each of the following as a radical and simplify, if possible.

$9^{\frac{1}{2}}$ $100^{\frac{1}{2}}$ $-100^{\frac{1}{2}}$

Rewrite in exponent form
 $\sqrt[7]{x}=x^{\frac{1}{7}}$
 11

Adding, Subtracting, and Multiplying Radical expressions

Product Property of Radicals
If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, and $n \geq 2$ is an integer, then

$$
\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b}
$$

Multiply and Simplify Assuming all variables are greater than or equal to zero.

$$
\begin{aligned}
& \sqrt{3} \cdot \sqrt{15} \\
& \sqrt{3 \cdot 15}=\sqrt{45} \underline{3} \sqrt[3]{4 x} \cdot \sqrt[3]{2 x^{4}} \\
& \sqrt[4]{27 a^{2} b^{5}} \cdot \sqrt[4]{6 a^{3} b^{6}}
\end{aligned}
$$

/
$\sqrt{5}(4+\sqrt{10})$
$4 \sqrt{5}+\sqrt{50}$
$\sqrt{15}(\sqrt{5}+4 \sqrt{3})$
$\sqrt{75}+4 \sqrt{45}$

