

2-1a: I can identify and graph parent functions.

2-1b: I can determine attributes such as: domain, range, increasing, decreasing, intercepts, max, min, and end behavior from a graph.

Domain \& Range
 Domain: x-values - input read x's from left to right (smallest to largest)
 *some functions have domain restrictions
 can't have a neg. \# in a sq. root to find: set the radicand ≥ 0 and solve for x .

Range: y-values - output read y's from bottom to top (smallest to largest)

x \& y intercepts

y-intercepts: where the graph crosses the y axis and $x=0$
x-intercepts: where the graph crosses the x-axis and $y=0$
intercepts are points on a graph \& should be written as ordered pairs!!! (x,y)

$$
2 x+3 y=6
$$

x-intercept $(\mathrm{y}=0)$
y-intercept $(x=0)$

Increasing, Decreasing and Constant

 - Increasing: as you move from left to right the yvalues increase- Decreasing: as you move from left to right the yvalues decrease
- Constant: as you move from left to right the y values do not change
this behavior is reported using interval notation for the X-VALUES where the graph has a certain behavior

Extrema

Maximums:

Minimums:

Ordered Pairs!

Limits

as x approaches \qquad , y approaches \qquad
Describe end behavior using limit $\lim _{x \rightarrow \infty}^{\text {notation: }} f(x)=1$ $\lim _{x \rightarrow-\infty} f(x)=1$
this means the left end

$\lim _{x \rightarrow \infty} f(x)$
$\lim _{x \rightarrow-\infty} f(x)$

MEMORIZE THIS!!!

Absolute Value.

x	y
0	
1	
2	\imath
-1	
-2	\imath

Domain:
Range:

Increasing:
Decreasing:
x-intercepts:
y-intercepts:
Max:
Min:
Left End Behavior:
Right End Behavior:

Square Root

Cube Root

Exponential

x	y
0	
1	
2	
3	
-1	

Domain:
Range:
Increasing:
Decreasing:
x-intercepts:
y-intercepts:
Max:
Min:
Left End Behavior:
Right End Behavior:

