11-3: Attributes of Rational Graphs

Objectives:

1. I can find the x and y intercepts of a rational function
2. I can find the vertical and horizontal asymptotes of a rational function

X and Y Intercepts
Y intercepts, $\mathrm{x}=0$

$$
f(x)=\frac{3 x-12}{x^{2}-5 x-6}
$$

X intercepts, $\mathrm{y}=0$

$$
\begin{aligned}
\frac{f(x)}{} & =\frac{3 x-12}{x^{2}-5 x-6} \\
x^{x^{2}} \cdot 0 & =\frac{3 x-12}{x^{2}-5 x-6} \cdot x^{2}-5 x-6 \\
0 & =3 x-12=0
\end{aligned}
$$

Find the x and y intercepts of the following functions:

$$
\begin{aligned}
& f(x)=\frac{(0-3)(x+1)}{2+2}=\frac{-3}{2} \\
& 0=(x-3)(x+1) \\
& x=3,-1 \\
& f(x)=\frac{3 x-5}{(x-2)(x-3)}
\end{aligned}
$$

Set the denominator $=0$, then solve for x

Find the vertical asymptotes:

$$
\begin{aligned}
& \text { a. } y=\frac{3 x-5}{(x-2)(x+2)} \quad \text { lb. } \quad y=\frac{2 x^{3}}{x-5} \\
& \text { VA:2, } \underbrace{\prime}_{1} \left\lvert\, \begin{array}{l}
1 \\
1 \\
1
\end{array}\right.
\end{aligned}
$$

To find the horizontal asymptote (HA) compare the degrees of the numerator and denominator if:
top heavy: oblique/dia gonal bottom heavy (HEB): y = 0 equal (HA): divide leading coefficients

What kind of end behavior will the following have?

$$
f(x)=\frac{-3}{x-1}
$$

$$
f(x)=\frac{3 x-7}{x-2} \forall A \cdot \frac{3}{1}=3-\frac{f-c}{f}
$$

Identify the x and y intercepts, vertical and horizontal asymptotes, end behavior, and then graph.

$$
\begin{aligned}
& f(x)=\frac{3 x-2}{x-1} \\
& y \text {-int }: 2 \\
& x-i n t: 2 / 3 \\
& V A: 1 \\
& A A: 3
\end{aligned}
$$

Graph and Analyze $f(x)=\frac{x+1}{(x+3)(x-4)}$

> Domain
> Range
> x-intercepts
> y-intercepts
> VA
> HA
> Asymptote Behavior

End Behavior

