1-2 Factoring Polynomials

Objectives:

1-2a: I can factor a polynomial by grouping.

1-2b: I can factor a trinomial.

Factor by Grouping.
Is there a GCF?

$$
\begin{array}{r}
\begin{array}{ll}
\frac{\left.4 x^{2}+6 x\right)}{2 x-3}-\frac{x^{3}-3 x^{2}}{}+x-3 \\
2 x(2 x+3)-(2 x+3) & (x-3) \\
(2 x+3)(2 x-1)
\end{array} \\
\left(x^{2}+1\right)(x-3)
\end{array}
$$

You're up!

$9 x^{2}+6 x+6 x+4$

$$
4 x^{2}-8 x+x-2
$$

Riddle...r me this...

What two numbers multiply to -12 , but also add to -1?

$$
-4,3
$$

What two numbers multiplies to 15 that also add to 8 ?

What two numbers multiply to -15 that also add to -2 ?

Factor the following polynomial by grouping and the Riddler together.

$$
\begin{gathered}
x^{2}+2 x+1 \\
(x+1)(x+1)
\end{gathered}
$$

Factor the following trinomials.

$$
\begin{array}{cc}
x^{2}+8 x+15 & x^{2}-2 x-15 \\
3,5 & \\
(x+3)(x+5) &
\end{array}
$$

How to Factor a Quadratic
 Factoring quadratics in the form $a x^{2}+b x+c$

1. Factor out the GCF
2. Multiply a and c
3. Find two factors of ac that add to b
*If ac is negative, factor.s must have opposite signs
*If ac is positive, factors must have same (+ or -) signs
4. Re-write equation with b split up into factors
5. Find the GCF by grouping
6. Factor the GCF of the whole

Other methods (optional per teacher)

